
Guillermo Polito - ESUG’24

Testing the tests with 
Mutalk in 2024

guillermo.polito@inria.fr

EvreffervE

mailto:guillermo.polito@inria.fr

Quick About Me

2

EvreffervE

• Now: Researcher at Inria - Lille

• Pharo Contributor since ~2010

• Keywords: compilers, testing, test generation

• Interests: tooling, benchmarking, 日本語, board games, batman, concurrency

If any of that interests you, come talk to me!

guillermo.polito@inria.fr

@guillep

mailto:guillermo.polito@inria.fr

Automated Tests

in this context
when this happens

then this should happen

SetTest	>>	testAdd		

		|	aSet	|	
		"Context"	
		aSet	:=	Set	new.			
			
		“Stimuli"	
		aSet	add:	5.	
		aSet	add:	5.	

		"Check"	
		self	assert:	aSet	size	equals:	1.

3

We love tests

4

App
Run Tests

App is Healthy!
=D

App is broken
:’(

What is a good test?

“A good test is a test that catches bugs”

- me

5

Who watches the Watchmen tests?

6
TESTS

7

Mutalk: Mutation testing for Pharo

• Originally developed in Pharo 1.1 in Argentina (Chillo, Brunstein, Wilkinson)

• Presented at ESUG’09

• Pharo 9 to 12 !

8

Coverage vs Mutations

9

30%
Code 

Coverage

4% 
Mutation
Coverage

Mutation testing in a nutshell

10

App

Tests

High Score => Good tests!
=D

Low Score => Bad tests…
:’(

+

Create Mutants
SCORE

11

12

These kind of mutant

13

• Introduce artificial bugs

• See if the test suite detects them

• What kind of bugs?

Competent developer hypothesis

• Developers are capable people

• Mistakes/bugs are small details easily overseen. E.g.,

• Missing +/-	1 in a loop

• An inverted conditional

• Signed/unsigned

14

Thousands of simple mutations

• Control flow bugs

• Arithmetic bugs

• Logic bugs

• Overflow bugs

• Typoes

15

Mutation Analysis

16

abc
Apply Mutation

original
program mutant

Run Tests

mutation

axc

Survived

Killed

E.g., change one + by a -

The insight

• Survived mutants were either

1. not covered

2. not asserted 

3. or semantically equivalent. 
 E.g. A+B=A-B	if	B=0	always

17

improve your tests!!

bias our results

Mutation Score

• Run each mutation independently

• Score:

18

#Killed

#Mutants

THE Problem of Mutation Analysis

19

Runtime	=	Time(tests)	*	#Mutants

Can we run less mutants?

Can we run less tests?

Optimizing of Mutation Analysis

20

Runtime	=	Time(tests)	*	#Mutants

Ideally… no impact on score!

• Run only tests covering mutants

• Only mutate covered code

• What if lots of mutants remain?

Selecting Mutants and Tests from Coverage

21

Test1

Test2

Test3
?

• Lots on research on it

• Aggressively reduces run time

Random Sampling of Mutants

22

Test

Test

Test
Running Mutalk on Pharo’s UUID

Stabilizes between 60-70%

• Stratified sampling with different strategies

• per class, method, …

1. Taking a sample:

1. Take a group at random

2. Take a member from the group

Guiding Random Sampling of Mutants

23

Cat’A Cat’B Cat’Z…

Cat’B

Stratification

Sample 
Group

Sample 
Member

When to Stop Sampling: Budgets!

• Fixed budgets: # or % of mutants

• Too many: No win in runtime!

• Too few: Unrealistic mutation score…

• We need a practical solution:

• Time budget!

24

How many?

• Github actions

• + Microdown

• Configure budgets, different run modes…

25

Github actions integration

• Fine-tune for your project

• Advanced mutation analysis

• Identify

• Trivial mutations: easy to kill

• Redundant tests and mutants

• Randomization strategy

Mutation Matrix and Heatmap

26

Talk to me

• If you want to use it!

• If you want to contribute!

• You need specific operators

27

Mutalk 2024

• Working from Pharo9 to Pharo12 (13?)

• Practical: Budgets, random selection and CI

• New features: test filters, logging, new operators

• Fixes, improvements, cleanups

• Thanks to all people contributing over the years!
28

Coverage vs Mutation

• Average has 100% coverage

• What if we mistake the / by a *?

29

CollectionTest	>>	testAverage	
				self	assert:	#(1	2	3)	average	

Collection	>>	average	
				^	self	sum	/	self	size

