
Balša Šarenac, Stéphane Ducasse and Nicolas Anquetil

A New Architecture
Reconciling Refactorings and Transformations

EvreffervE

Definitions

• Transformation

• Refactoring

• Precondition

• Atomic refactoring

• Composite refactoring

2

Imagine a world with only refactorings

• Then you have to do your transformations by hand

• Override an existing method

3

Imagine a world with only transformations

• Then you can break your systems with just adding a method (as in VSCode :))

4

We need both refactorings
and transformations

5

Example

6

Code example
RBInlineMethodRefactoring >> preconditions

. . . .

self isOverridden ifTrue: [

self refactoringWarning:

('<1p>>><2s> is overridden. Do you want to inline it
anyway?’

expandMacrosWith: self classOfTheMethodToInline

with: self inlineSelector)]].

.
7

Transformations AND Refactorings

• G. De Souza Santos defined Transformations and CompositeTransformations

• But a lot of code duplication

• Difficult to understand when using what

• What about preconditions?

8

Goals of our engineering effort

• Modernise our engine

• Reduce code duplication

• Cleaner code

• More tests

• Assess refactorings (clear/correct preconditions / semantics)

• Usability issues

9

Goals of our scientific work

• Reuse of transformations and refactorings to form new ones

• Understand composition issues (ongoing)

• Our ultimate goal is

• Support you to write your own transformation

• Domain specific refactoring definitions

10

A solid basis

• A refactoring reasons on a program model

• Check preconditions on such a program model

• Produces first class changes that can be previewed

• Then and only then actual modifications are done

Refactorings

RBM
ethod

RBN
am

espace

RBEntity

RBAbstractC
lass

RBPackage

RBM
etaclass

RBC
lass

Changes

AST

ParseTreeRewriter
C
ondition

Program Model

11

A kind atomic approach

• A refactoring reasons on a program model

• Check preconditions on such a program model

• Produces first class changes that can be previewed

• Then if something fails you can not apply the modifications

12

About
Preconditions

13

Do you think that transformations
needs preconditions?

14

“Transformation-based Refactorings” [IWST22]
shows that there are different kinds of preconditions

15

Different kind of Preconditions
See IWST 22

• Applicability

• Breaking change

• Skipping

• Others

16

applicabilityPreconditions

RBAddMethodTransformation >> applicabilityPreconditions

 . . . class should exist . . .

 . . . method should be parsable . . .

17

breakingChangesPrecondition

RBAddMethodRefactoring >> applicabilityPreconditions

 . . . method shouldn’t be overridden . . .

18

About Reuse

19

Clear separation

• Refactorings have breaking changes preconditions

• Transformations have applicability preconditions

20

Example
Add method

RBAddMethodTransformation

precondit ions()
applicabil i tyPrecondit ions()
privateTransform()

RBAddMethodRefactoring

precondit ions()
breakingChangePreconditions()
privateTransform()

21

Example
Add method

RBAddMethodRefactoring >> privateTransform

	 transformation privateTransform

RBAddMethodTransformation >> privateTransform

	 self definingClass

	 	 compile: sourceCode

	 	 classified: protocol

RBAddMethodRefactoring >> preconditions

	 transformation checkPreconditions.

	 ^ self breakingChangePreconditions

22

Refactorings are decorators for transformations

• Refactoring uses Transformation to check applicability conditions

• Refactoring checks breaking change conditions

• Refactoring uses Transformation to make changes

• [Refactoring does cleanups and fixes if needed]

RBAddMethodRefactoring —> RBAddMethodTransformation

23

State of situation

• We are in the process of converting all the implementation to this design

24

About
engineering

25

Realigning transformations and refactorings

• Better API

• Partial instantiation of refactorings to support better interaction

• Moving more responsibilities to refactorings

26

Revisit preconditions

• Some preconditions were obscure / wrong

• Clearly identify breaking and applicability preconditions

• Adding a lot of comments

• Fixing, enhancing tests

27

About the (T)

• You are warn when
you use a
Transformation

28

Cmd to Cm2.0

RBRefactoring

execute()

CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

RBRefactoring

execute()

CmCommand

prepareFullExecutionInContext()
isApplicable()
executeRefactoring()

29

About UI

RBRefactoring

execute()

CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

UI

UI

UI

UI

UI
UI

UI

30

Preconditions should not raise UI!

‣ Preconditions had a lot of UI like:

• Gather user input

• Raise warnings

• Show confirmation dialogs

31

New Tooling

RBRefactoring

generateChanges()
performChanges()

RBDriver

configureRefactoring()
runRefactoring()
openPreviewWithChagnes(changes)

SycCmCommand

prepareFullExecutionInContext()
isApplicable()
executeRefactoring()

UI

32

New Architecture

33

Refactorings

RBM
ethod

RBN
am

espace

RBEntity

RBAbstractC
lass

RBPackage

RBM
etaclass

RBC
lass

Changes

AST

ParseTreeRewriter

C
ondition

Program Model

Drivers

UI

Driver

‣ UI is Driver’s responsibility now

• Configures refactorings

• Gathers user input

• Displays errors and warnings

• Displays any other relevant information (notifications, browsers, etc.)

34

Open questions

• Do we keep warning and exceptions

• Why not having failing reports that can be nicely displayed

35

About
Composition

(Started recently)

36

Existing Refactorings are monolithic

• G. De Souza Santos started to define more modular transformations
(RBCompositeTransformation)

• We introduced

• RBCompositeRefactoring

• Starting to play with composition semantics :)

37

Composite

RBRefactoring

execute()

precondit ions()
privateTransform()

CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

RBCompositeRefactoring

precondit ions()
privateTransform()

38

Let us study RemoveInstanceVariables

39

refactoring := RBCompositeRefactoring new

	 model: model;

	 refactorings: (variables collect: [:each |

	 	 RBRemoveInstanceVariableRefactoring

 model: model

 remove: each

 from: class]);

	 yourself

RBCompositeRefactoring

• Execute in sequence refactorings

• P1, T1; P2, T2; … Pn Tn

40

RBCompositeRefactoring >> privateTransform

	 refactorings do: [:each | each generateChanges]

Different execution semantics

• Stop on failure (as RBCompositeRefactoring)

• Skip failed and proceed (as RBCompositeContinuingRefactoring)

RBCompositeContinuingRefactoring >> privateTransform

refactorings do:

[:each |

[each generateChanges] on: RBRefactoringError do: [:ex |]

]

41

Custom composite example
Can we remove both fooUnik and barUnikUnik?

X >> fooUnik

^ 12

X >> barUnikUnik

^ self fooUnik + 1

42

Custom composite need

removeMethods (fooUnik, barUnikUnik)

 is not equals to

removeMethod (fooUnik);
removeMethod (barUnikUnik)

43

Custom composite

RBCompositeRefactoring

precondit ions()
privateTransform()

RBCompositeRemoveMethodRefactoring

precondit ions()
privateTransform()

RBRemoveMethodTransformation

precondit ions()
privateTransform()

44

Require case by case analysis

- Specify

- Validate

- Composite preconditions

- Component preconditions

Future work: a large effort

• Continue eliminating code duplication between refactorings and
transformation

• Leverage composition of refactorings where possible

• Migrate to Commander2.0

• Migrate all UI to Driver

• A lot more to…

45

New architecture for the future :)
• Many many hidden improvements

• Driver for interactive application

• Clear roles for Transformations and Refactoring:

• A refactoring is a decorator of a transformation

• Better separation of concerns

Still some work but the path is clear

46

Refactorings

RBM
ethod

RBN
am

espace

RBEntity

RBAbstractC
lass

RBPackage

RBM
etaclass

RBC
lass

Changes

AST

ParseTreeRewriter

C
ondition

Program Model

Drivers

UI

