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Definitions

• Transformation


• Refactoring


• Precondition


• Atomic refactoring


• Composite refactoring
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Imagine a world with only refactorings

• Then you have to do your transformations by hand


• Override an existing method
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Imagine a world with only transformations

• Then you can break your systems with just adding a method (as in VSCode :))
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We need both refactorings 
and  transformations
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Example
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Code example
RBInlineMethodRefactoring >> preconditions


. . . . 


self isOverridden ifTrue: [


self refactoringWarning:


('<1p>>><2s> is overridden. Do you want to inline it 
anyway?’


expandMacrosWith: self classOfTheMethodToInline


with: self inlineSelector) ] ].


. . . . .
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Transformations AND Refactorings

• G. De Souza Santos defined Transformations and CompositeTransformations


• But a lot of code duplication


• Difficult to understand when using what


• What about preconditions?
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Goals of our engineering effort

• Modernise our engine


• Reduce code duplication 


• Cleaner code


• More tests


• Assess refactorings (clear/correct preconditions / semantics)


• Usability issues
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Goals of our scientific work

• Reuse of transformations and refactorings to form new ones


• Understand composition issues (ongoing)


• Our ultimate goal is 


• Support you to write your own transformation


• Domain specific refactoring definitions
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A solid basis 

• A refactoring reasons on a program model

• Check preconditions on such a program model

• Produces first class changes that can be previewed 

• Then and only then actual modifications are done
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A kind atomic approach

• A refactoring reasons on a program model


• Check preconditions on such a program model


• Produces first class changes that can be previewed 


• Then if something fails you can not apply the modifications
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About 
Preconditions
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Do you think that transformations 
needs preconditions?
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“Transformation-based Refactorings” [IWST22] 
shows that there are different kinds of preconditions 
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Different kind of Preconditions
See IWST 22 

• Applicability


• Breaking change


• Skipping


• Others
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applicabilityPreconditions

RBAddMethodTransformation >> applicabilityPreconditions


    . . . class should exist . . .


    . . . method should be parsable . . .
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breakingChangesPrecondition

RBAddMethodRefactoring >> applicabilityPreconditions


    . . . method shouldn’t be overridden . . .
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About Reuse
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Clear separation

• Refactorings have breaking changes preconditions


• Transformations have applicability preconditions

20



Example
Add method

RBAddMethodTransformation

precondit ions()
applicabil i tyPrecondit ions()
privateTransform()

RBAddMethodRefactoring

precondit ions()
breakingChangePreconditions()
privateTransform()
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Example
Add method

RBAddMethodRefactoring >> privateTransform


	 transformation privateTransform

RBAddMethodTransformation >> privateTransform


	 self definingClass

	 	 compile: sourceCode

	 	 classified: protocol

RBAddMethodRefactoring >> preconditions


	 transformation checkPreconditions.


	 ^ self breakingChangePreconditions
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Refactorings are decorators for transformations

• Refactoring uses Transformation to check applicability conditions


• Refactoring checks breaking change conditions


• Refactoring uses Transformation to make changes


• [Refactoring does cleanups and fixes if needed]

RBAddMethodRefactoring —> RBAddMethodTransformation
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State of situation

• We are in the process of converting all the implementation to this design
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About 
engineering
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Realigning transformations and refactorings

• Better API 


• Partial instantiation of refactorings to support better interaction


• Moving more responsibilities to refactorings
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Revisit preconditions

• Some preconditions were obscure / wrong


• Clearly identify breaking and applicability preconditions


• Adding a lot of comments


• Fixing, enhancing tests
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About the (T)

• You are warn when 
you use a 
Transformation
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Cmd to Cm2.0

RBRefactoring

execute()

CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

RBRefactoring

execute()

CmCommand

prepareFullExecutionInContext()
isApplicable()
executeRefactoring()
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About UI

RBRefactoring

execute()

CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

UI

UI

UI

UI

UI
UI

UI
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Preconditions should not raise UI!

‣ Preconditions had a lot of UI like:


• Gather user input


• Raise warnings


• Show confirmation dialogs
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New Tooling

RBRefactoring

generateChanges()
performChanges()

RBDriver

configureRefactoring()
runRefactoring()
openPreviewWithChagnes(changes)

SycCmCommand

prepareFullExecutionInContext()
isApplicable()
executeRefactoring()

UI
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New Architecture
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Driver

‣ UI is Driver’s responsibility now


• Configures refactorings


• Gathers user input


• Displays errors and warnings


• Displays any other relevant information (notifications, browsers, etc.)
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Open questions

• Do we keep warning and exceptions


• Why not having failing reports that can be nicely displayed
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About 
Composition

(Started recently)
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Existing Refactorings are monolithic

• G. De Souza Santos started to define more modular transformations 
(RBCompositeTransformation)


• We introduced 


• RBCompositeRefactoring


• Starting to play with composition semantics :)
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Composite

RBRefactoring

execute()
 
precondit ions()
privateTransform()

CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

RBCompositeRefactoring

precondit ions()
privateTransform()
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Let us study RemoveInstanceVariables
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refactoring := RBCompositeRefactoring new

	 model: model; 

	 refactorings: (variables collect: [:each | 

	 	 RBRemoveInstanceVariableRefactoring


              model: model

              remove: each

              from: class]);


	 yourself 



RBCompositeRefactoring

• Execute in sequence refactorings


• P1, T1; P2, T2; … Pn Tn
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RBCompositeRefactoring >> privateTransform


	 refactorings do: [ :each | each generateChanges ]



Different execution semantics

• Stop on failure (as RBCompositeRefactoring)


• Skip failed and proceed (as RBCompositeContinuingRefactoring)

RBCompositeContinuingRefactoring >> privateTransform


refactorings do: 

[ :each | 


[ each generateChanges] on: RBRefactoringError do: [ :ex | ] 


]
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Custom composite example
Can we remove both fooUnik and barUnikUnik?

X >> fooUnik

^ 12


X >> barUnikUnik

^ self fooUnik + 1
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Custom composite need

removeMethods (fooUnik, barUnikUnik) 

               is not equals to 

removeMethod (fooUnik); 
removeMethod (barUnikUnik)
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Custom composite

RBCompositeRefactoring

precondit ions()
privateTransform()

RBCompositeRemoveMethodRefactoring

precondit ions()
privateTransform()

RBRemoveMethodTransformation

precondit ions()
privateTransform()
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Require case by case analysis

- Specify

- Validate


- Composite preconditions

- Component preconditions 



Future work: a large effort

• Continue eliminating code duplication between refactorings and 
transformation


• Leverage composition of refactorings where possible


• Migrate to Commander2.0


• Migrate all UI to Driver


• A lot more to…
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New architecture for the future :)
• Many many hidden improvements


• Driver for interactive application


• Clear roles for Transformations and Refactoring:


• A refactoring is a decorator of a transformation


• Better separation of concerns


Still some work but the path is clear
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