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Definitions

* Jransformation

» Refactoring

* Precondition

* Atomic refactoring

 Composite refactoring



Imagine a world with only refactorings

* Then you have to do your transformations by hand

* QOverride an existing method



Imagine a world with only transformations

* Then you can break your systems with just adding a method (as in VSCode :))



We need both refactorings
and transformations




Example

There are 10 methods calling privateTransform

Select a strategy

‘©)Don't remove, but show me those senders
‘C)Remove, then browse senders
{©)Remove it

Cancel Accept



Code example

RBInlineMethodRefactoring >> preconditions

self isOverridden ifTrue: |

self refactoringWarning:

(

expandMacrosWith: self classOfTheMethodToInline

with: self inlineSelector) ] ].



Transformations AND Refactorings

 G. De Souza Santos defined Transformations and Composite Transformations
 But a lot of code duplication
» Difficult to understand when using what

 What about preconditions??



Goals of our engineering effort

 Modernise our engine
 Reduce code duplication
* Cleaner code
 More tests
» Assess refactorings (clear/correct preconditions / semantics)

e Usabillity issues



Goals of our scientific work

* Reuse of transformations and refactorings to form new ones
* Understand composition issues (ongoing)
e QOur ultimate goal is

e Support you to write your own transformation

 Domain specific refactoring definitions
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Program Model

A refactoring reasons on a program model
Check preconditions on such a program model

 Produces first class changes that can be previewed

Then and only then actual modifications are done
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A kind atomic approach

* A refactoring reasons on a program model
* Check preconditions on such a program model
* Produces first class changes that can be previewed

 Then if something fails you can not apply the modifications
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About
Preconditions



Do you think that transformations
needs preconditions?



“Transformation-based Refactorings” [IWST22]
shows that there are different kinds of preconditions

Transformation-based Refactorings: a First Analysis
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Abstract
Refactarings are behaviar preserving transformati
d in particular ho
simple transformatiar

ons. Litthe work exists on the analysis of their imple-

uts (bein

refactorings could be composed from smaller, reusabl
and how (non behavior peeserving) tr;

be used in isolation

volution of

is available as the Refactoring Brawser package i

‘haro. In particular we focus o the possibilities to
reuse transformations independently from the behavior preserving aspect of a refactoring. The long

answer is: Is it passible to have mare atomsc transforn and refactarings
torings and identify

1. Introduction

Refactorings are behavior preserving code transformations. The seminal work of Opdyke

[Opd92] and the Refactorings Browser (first of of Roberts and
Brant [RBJO%, RBJ97, BR98]) paved the way to the spread of refactorings [FBB * 99]. They are
now a must-have standard in modern IDEs [MHPB11, NCV * 13, VON'* 12, VM 13, GDMH12]
Alot of research has been performed on refactorings such as for their detection [TME" 18],
‘missed application opportunities [TC09, TC10], practitioner use [MH C! NCV*13,
VCM' 13], or atomic refactorings for live environments [TPF" 18). Several publications focus
on scripting refactorings [VEAMO06, LT12, SvP12, HKV12, KBD15). Finally, some work tried to

speed up refactoring engines, proposing alternatives to the slow and bogus Java refactoring
engine [KBDA16). Related to this, it should be noted that the Pharo Refactoring Browser

chitecture supports fast p dition validation and refactoring execution and does not suffer
from the architecture problems reported by Kim et al. [KBDA16).

WST22 Inn
Qinicolas.anqu

juanpablo.sandoval @ing.puc.cl (1-P.S. Alcocer), pal

26, 2022, Novy Sad, Serbia

51 (J-P.S. Alcocer)
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Different kind of Preconditions
See IWST 22

o Applicability
 Breaking change
» Skipping

* Others



applicabilityPreconditions

RBAddMethodTransformation >> applicabilityPreconditions



breakingChangesPrecondition

RBAddMethodRefactoring >> applicabilityPreconditions



About Reuse



Clear separation

 Refactorings have breaking changes preconditions

* [ransformations have applicability preconditions

20



Example @ RBAddMethodRefactoring

Add method

preconditions()
breakingChangePreconditions()
privateTransform()

@RBAddMethodTransformation

preconditions()
applicabilityPreconditions()
privateTransform()
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Example
Add method

RBAddMethodRefactoring >> preconditions
transformation checkPreconditions.

~ self breakingChangePreconditions

RBAddMethodRefactoring >> privateTransform

transformation privateTransform

RBAddMethodTransformation >> privateTransform

self definingClass
complle: sourceCode
classified: protocol
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Refactorings are decorators for transformations

RBAddMethodRefactoring —> RBAddMethod Iransformation

* Refactoring uses Transformation to check applicability conditions
* Refactoring checks breaking change conditions
* Refactoring uses Transformation to make changes

» [Refactoring does cleanups and fixes if needed]
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State of situation

 We are in the process of converting all the implementation to this design
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About
engineering




Realigning transformations and refactorings

o Better API
* Partial instantiation of refactorings to support better interaction

 Moving more responsibilities to refactorings

@ RBAbstractTransformation

execute()

@ RBRefactoring

checkPreconditions()

@ RBTransformation

execute()

| privateTransform()
execute() performChanges()
checkPreconditions() e T / \

E)r:ngfr:]rgé)anges() privateTransform()

@ RBRefactoring @ RBTransformation

privateTransform() | privateTransform()
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Revisit preconditions

 Some preconditions were obscure / wrong
» Clearly identify breaking and applicability preconditions
 Adding a lot of comments

* Fixing, enhancing tests
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About the (T)

e You are warn when
you use a
Transformation

x = []

» [ PharoDocComment

» [E1 PharoDocComment-Tests

» [E] Polymorph-Widgets
Polymorph-Widgets-Rules

» [ PragmaCollector
ProfStef-Core

» [ ProfStef-Tests

» [ ProfilerUl

» |- RPackage-Core

» £ RPackage-Tests

» [ Random-Core

» [£] Random-Tests

» [ Refactoring-Changes

» |- Refactoring-Core

e - r [] -~ 1

Filter...

W

v (€ RBChangeMethodName ™ »
(€) RBAddParameterRefac
v (€) RBRemoveParameterR

Filter...

RBExtractSetUpMethodAndOccurrences

overrides

(€) RBInlineParameterRe
(€) RBRenameMethodRefa
(€) RBReplaceMessageSen

i

il

(R
© RB
©R
(€' RB

‘e e

'RB

() RBCreateCascadeRefact
'©) RBDeprecateMethodRef
(€) RBExtractMethodAndOc

-! Browse #b
Class refs. 3En
Show trait users

" Rename Fhr

Deprecate

Migrate references

-+ Add class|es) to scope list

@ All Packages O ScopedView | @ Flat O Hier. 4 Add hierarchy to scope list

** Dependencies

‘c) RBExtractSetUf =

(L) Break on all variable accesses
G Break on all variable reads

RBEExtractMethodAndOccurrences << ¢ G Break on all variable writes

slots: {};
tag:
package:

'Refactorings’;
'Refactoring-Core’
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(T) Realize class
-+ Abstract instance variables 3 %2

instance side 4,[|
transforming

-+ Generate accessors #0g,4a
1 New trait
c) New class
¢ Jump to test class F£0,3E]
. New test class
| Copy 3B
77 Remove Hx
Refactorings
Extra 4

~ extractMethodClass
~ findOccurrencesClass
« privateTransform

is O vars | Class refs.

IC X

2NCESs

SELF 4 Move to package 3m, #c

¥ (T) Make abstract
-+ New subclass

¥ Insert subclass
¥ Insert superclass

Fluid



Cmd to Cm2.0

@ CmdCommand | @ CmCommand
prepareFullExecutioninContext() prepareFullExecutioninContext()
createRefactoring() isApplicable()

execute() ) executeRefactoring()
, 4 \ : \ 4 \
@RBRefactoring @RBRefactoring

execute() execute()

29



About Ul

mCdeomman@
pre |

IExecu’uonInContext@
createRefactoring()
execute

@RBRefact
execute@
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Preconditions should not raise Ul!

» Preconditions had a lot of Ul like:
o (Gather user input
* Raise warnings

 Show confirmation dialogs



New Tooling

@ SycCmCommand

prepareFullExecutionIinContext()
isApplicable()
executeRefactoring()

v
@ RBDriver

configureRefactoring()
runRefactoring()

openPreviewWithChagnes(changes)

, Y \
(C) RBRefactoring

generateChanges()
performChanges()
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New Architecture
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Driver

> Ul Is Driver’s responsibility now
» Configures refactorings
 (Gathers user input
* Displays errors and warnings

* Displays any other relevant information (notifications, browsers, etc.)
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Open questions

Do we keep warning and exceptions

 Why not having failing reports that can be nicely displayed
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About
Composmon

tttttttttttttt




Existing Refactorings are monolithic

e (5. De Souza Santos started to define more modular transformations
(RBComposite Transformation)

* We introduced
« RBCompositeRefactoring

o Starting to play with composition semantics :)
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Composite
@ CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

M (C) RBRefactoring

@RBCompositeRefactoring >

execute()

preconditions()
privateTransformy()

1 preconditions()
privateTransform()

i
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Let us study RemovelnstanceVariables

refactoring := RBCompositeRefactoring new
model: model:
refactorings: (variables collect: [:each |
RBRemovelInstanceVariableRefactoring

model: model
remove: each
from: classl);

yourself
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RBCompositeRefactoring

* EXxecute In sequence refactorings

e P1,1T1; P2, T2; ... Pn In

RBCompositeRefactoring >> privateTransform

refactorings do: [ :each | each generateChanges ]
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Different execution semantics

» Stop on failure (as RBCompositeRefactoring)

» Skip failed and proceed (as RBCompositeContinuingRefactoring)

RBCompositeContinuingRefactoring >> privateTransform

refactorings do:
[ :each |

[ each generateChanges] on: RBRefactoringError do: [ :ex | |
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Custom composite example

Can we remove both fooUnik and barUnikUnik?

X >> fooUnik
~ 12

X >> barUnikUnik
N self fooUnik + 1



Custom composite need

removeMethods (fooUnik, barUnikUnik)
IS hot equals to

removeMethod (fooUnik);
removeMethod (barUnikUnik)



Custom composite

@RBCompositeRemoveMethodRefactoring @RBRemoveMethodTransformation
. . " . .
preconditions() preconditions()
privateTransformy() privateTransform()
(C)RBCompositeRefactoring Require case by case analysis
- Specify
preconditions() - Validate
privateTransformy()

- Composite preconditions
- Component preconditions

44



Future work: a large effort

* Continue eliminating code duplication between refactorings and
transformation

* | everage composition of refactorings where possible
 Migrate to Commander2.0
 Migrate all Ul to Driver

e A lot more to...
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New architecture for the future :)

 Many many hidden improvements
* Driver for interactive application
e Clear roles for Transformations and Refactoring:

* A refactoring is a decorator of a transformation

o Better separation of concerns e T .
O _ : Refactorings — — Changes |
_, Drivers > | : !
w - _?—  ParseTreeRewriter |
0 - > 5 | &
e o
| =< % é;é g g g %z) =
-~ — (@)
Still some work but the path is clear , :
Ul : Program Model
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