A New Architecture
Reconciling Refactorings and Transformations

Bal$a Sarenac, Stéphane Ducasse and Nicolas Anquetil

y 4

h s Evref

Definitions

* Jransformation

» Refactoring

* Precondition

* Atomic refactoring

 Composite refactoring

Imagine a world with only refactorings

* Then you have to do your transformations by hand

* QOverride an existing method

Imagine a world with only transformations

* Then you can break your systems with just adding a method (as in VSCode :))

We need both refactorings
and transformations

Example

There are 10 methods calling privateTransform

Select a strategy

‘©)Don't remove, but show me those senders
‘C)Remove, then browse senders
{©)Remove it

Cancel Accept

Code example

RBInlineMethodRefactoring >> preconditions

self isOverridden ifTrue: |

self refactoringWarning:

(

expandMacrosWith: self classOfTheMethodToInline

with: self inlineSelector)]].

Transformations AND Refactorings

 G. De Souza Santos defined Transformations and Composite Transformations
 But a lot of code duplication
» Difficult to understand when using what

 What about preconditions??

Goals of our engineering effort

 Modernise our engine
 Reduce code duplication
* Cleaner code
 More tests
» Assess refactorings (clear/correct preconditions / semantics)

e Usabillity issues

Goals of our scientific work

* Reuse of transformations and refactorings to form new ones
* Understand composition issues (ongoing)
e QOur ultimate goal is

e Support you to write your own transformation

 Domain specific refactoring definitions

10

ED GED GED GED GED GED GED GED GED GED GED GE GED GED GED GE GE G

Program Model

A refactoring reasons on a program model
Check preconditions on such a program model

 Produces first class changes that can be previewed

Then and only then actual modifications are done

11

| _ | |
| Refactorings — —> Changes !
= u | | | I
A solidb ' ' ' '
SOIl dsIS ' ParseTreeRewriter | : :
—————————————————— e e e e e e e e e e e e e 4
TP T rTrS
I
| > % 8
|94 T =
: 2IE: HNEREIRE
! =~ 2 [l [xm]|I|Z]]|Z S
: 2 181218213
: 2l lla||&|8]]2
| = 7 L O 3
| O QO 8
I
I
I

A kind atomic approach

* A refactoring reasons on a program model
* Check preconditions on such a program model
* Produces first class changes that can be previewed

 Then if something fails you can not apply the modifications

12

About
Preconditions

Do you think that transformations
needs preconditions?

“Transformation-based Refactorings” [IWST22]
shows that there are different kinds of preconditions

Transformation-based Refactorings: a First Analysis

Anquetil’, M. Campero’, Stéphane Ducasse’, | Alcocer” and
Tesone

"Univ: Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France

*Pontificia Universidad Cato

Santiaga, Chile

Abstract
Refactarings are behaviar preserving transformati
d in particular ho
simple transformatiar

ons. Litthe work exists on the analysis of their imple-

uts (bein

refactorings could be composed from smaller, reusabl
and how (non behavior peeserving) tr;

be used in isolation

volution of

is available as the Refactoring Brawser package i

‘haro. In particular we focus o the possibilities to
reuse transformations independently from the behavior preserving aspect of a refactoring. The long

answer is: Is it passible to have mare atomsc transforn and refactarings
torings and identify

1. Introduction

Refactorings are behavior preserving code transformations. The seminal work of Opdyke

[Opd92] and the Refactorings Browser (first of of Roberts and
Brant [RBJO%, RBJ97, BR98]) paved the way to the spread of refactorings [FBB * 99]. They are
now a must-have standard in modern IDEs [MHPB11, NCV * 13, VON'* 12, VM 13, GDMH12]
Alot of research has been performed on refactorings such as for their detection [TME" 18],
‘missed application opportunities [TC09, TC10], practitioner use [MH C! NCV*13,
VCM' 13], or atomic refactorings for live environments [TPF" 18). Several publications focus
on scripting refactorings [VEAMO06, LT12, SvP12, HKV12, KBD15). Finally, some work tried to

speed up refactoring engines, proposing alternatives to the slow and bogus Java refactoring
engine [KBDA16). Related to this, it should be noted that the Pharo Refactoring Browser

chitecture supports fast p dition validation and refactoring execution and does not suffer
from the architecture problems reported by Kim et al. [KBDA16).

WST22 Inn
Qinicolas.anqu

juanpablo.sandoval @ing.puc.cl (1-P.S. Alcocer), pal

26, 2022, Novy Sad, Serbia

51 (J-P.S. Alcocer)

15

Different kind of Preconditions
See IWST 22

o Applicability
 Breaking change
» Skipping

* Others

applicabilityPreconditions

RBAddMethodTransformation >> applicabilityPreconditions

breakingChangesPrecondition

RBAddMethodRefactoring >> applicabilityPreconditions

About Reuse

Clear separation

 Refactorings have breaking changes preconditions

* [ransformations have applicability preconditions

20

Example @ RBAddMethodRefactoring

Add method

preconditions()
breakingChangePreconditions()
privateTransform()

@RBAddMethodTransformation

preconditions()
applicabilityPreconditions()
privateTransform()

21

Example
Add method

RBAddMethodRefactoring >> preconditions
transformation checkPreconditions.

~ self breakingChangePreconditions

RBAddMethodRefactoring >> privateTransform

transformation privateTransform

RBAddMethodTransformation >> privateTransform

self definingClass
complle: sourceCode
classified: protocol

22

Refactorings are decorators for transformations

RBAddMethodRefactoring —> RBAddMethod Iransformation

* Refactoring uses Transformation to check applicability conditions
* Refactoring checks breaking change conditions
* Refactoring uses Transformation to make changes

» [Refactoring does cleanups and fixes if needed]

23

State of situation

 We are in the process of converting all the implementation to this design

24

About
engineering

Realigning transformations and refactorings

o Better API
* Partial instantiation of refactorings to support better interaction

 Moving more responsibilities to refactorings

@ RBAbstractTransformation

execute()

@ RBRefactoring

checkPreconditions()

@ RBTransformation

execute()

| privateTransform()
execute() performChanges()
checkPreconditions() e T / \

E)r:ngfr:]rgé)anges() privateTransform()

@ RBRefactoring @ RBTransformation

privateTransform() | privateTransform()

26

Revisit preconditions

 Some preconditions were obscure / wrong
» Clearly identify breaking and applicability preconditions
 Adding a lot of comments

* Fixing, enhancing tests

27

About the (T)

e You are warn when
you use a
Transformation

x = []

» [PharoDocComment

» [E1 PharoDocComment-Tests

» [E] Polymorph-Widgets
Polymorph-Widgets-Rules

» [PragmaCollector
ProfStef-Core

» [ProfStef-Tests

» [ProfilerUl

» |- RPackage-Core

» £ RPackage-Tests

» [Random-Core

» [£] Random-Tests

» [Refactoring-Changes

» |- Refactoring-Core

e - r [] -~ 1

Filter...

W

v (€ RBChangeMethodName ™ »
(€) RBAddParameterRefac
v (€) RBRemoveParameterR

Filter...

RBExtractSetUpMethodAndOccurrences

overrides

(€) RBInlineParameterRe
(€) RBRenameMethodRefa
(€) RBReplaceMessageSen

i

il

(R
© RB
©R
(€' RB

‘e e

'RB

() RBCreateCascadeRefact
'©) RBDeprecateMethodRef
(€) RBExtractMethodAndOc

-! Browse #b
Class refs. 3En
Show trait users

" Rename Fhr

Deprecate

Migrate references

-+ Add class|es) to scope list

@ All Packages O ScopedView | @ Flat O Hier. 4 Add hierarchy to scope list

** Dependencies

‘c) RBExtractSetUf =

(L) Break on all variable accesses
G Break on all variable reads

RBEExtractMethodAndOccurrences << ¢ G Break on all variable writes

slots: {};
tag:
package:

'Refactorings’;
'Refactoring-Core’

28

(T) Realize class
-+ Abstract instance variables 3 %2

instance side 4,[|
transforming

-+ Generate accessors #0g,4a
1 New trait
c) New class
¢ Jump to test class F£0,3E]
. New test class
| Copy 3B
77 Remove Hx
Refactorings
Extra 4

~ extractMethodClass
~ findOccurrencesClass
« privateTransform

is O vars | Class refs.

IC X

2NCESs

SELF 4 Move to package 3m, #c

¥ (T) Make abstract
-+ New subclass

¥ Insert subclass
¥ Insert superclass

Fluid

Cmd to Cm2.0

@ CmdCommand | @ CmCommand
prepareFullExecutioninContext() prepareFullExecutioninContext()
createRefactoring() isApplicable()

execute()) executeRefactoring()
, 4 \ : \ 4 \
@RBRefactoring @RBRefactoring

execute() execute()

29

About Ul

mCdeomman@
pre |

IExecu’uonInContext@
createRefactoring()
execute

@RBRefact
execute@

30

Preconditions should not raise Ul!

» Preconditions had a lot of Ul like:
o (Gather user input
* Raise warnings

 Show confirmation dialogs

New Tooling

@ SycCmCommand

prepareFullExecutionIinContext()
isApplicable()
executeRefactoring()

v
@ RBDriver

configureRefactoring()
runRefactoring()

openPreviewWithChagnes(changes)

, Y \
(C) RBRefactoring

generateChanges()
performChanges()

32

New Architecture

I
e 1|]| Condition
| A
| _ I
| _ I
| ? o RBNamespace
>]
o o RBMethod
I I
O " "
A | " RBPackage
I
L —[-—-—-=-—-- _
" RBMetaclass | ©
_ g
| =
! RBClass =
| <
_ (@)
| RBADbstractClass |
_ o
iy I -
P '| || RBEntity
2 0
E-E-HE
| =
AN
Cue=]
O D _
0
-
I %_ I
= _
" Dn.um | AST
O >
o~ &%
A

33

Driver

> Ul Is Driver’s responsibility now
» Configures refactorings
 (Gathers user input
* Displays errors and warnings

* Displays any other relevant information (notifications, browsers, etc.)

34

Open questions

Do we keep warning and exceptions

 Why not having failing reports that can be nicely displayed

35

About
Composmon

tttttttttttttt

Existing Refactorings are monolithic

e (5. De Souza Santos started to define more modular transformations
(RBComposite Transformation)

* We introduced
« RBCompositeRefactoring

o Starting to play with composition semantics :)

37

Composite
@ CmdCommand

prepareFullExecutionInContext()
createRefactoring()
execute()

M (C) RBRefactoring

@RBCompositeRefactoring >

execute()

preconditions()
privateTransformy()

1 preconditions()
privateTransform()

i

38

Let us study RemovelnstanceVariables

refactoring := RBCompositeRefactoring new
model: model:
refactorings: (variables collect: [:each |
RBRemovelInstanceVariableRefactoring

model: model
remove: each
from: classl);

yourself

39

RBCompositeRefactoring

* EXxecute In sequence refactorings

e P1,1T1; P2, T2; ... Pn In

RBCompositeRefactoring >> privateTransform

refactorings do: [:each | each generateChanges]

40

Different execution semantics

» Stop on failure (as RBCompositeRefactoring)

» Skip failed and proceed (as RBCompositeContinuingRefactoring)

RBCompositeContinuingRefactoring >> privateTransform

refactorings do:
[:each |

[each generateChanges] on: RBRefactoringError do: [:ex | |

41

Custom composite example

Can we remove both fooUnik and barUnikUnik?

X >> fooUnik
~ 12

X >> barUnikUnik
N self fooUnik + 1

Custom composite need

removeMethods (fooUnik, barUnikUnik)
IS hot equals to

removeMethod (fooUnik);
removeMethod (barUnikUnik)

Custom composite

@RBCompositeRemoveMethodRefactoring @RBRemoveMethodTransformation
. . " . .
preconditions() preconditions()
privateTransformy() privateTransform()
(C)RBCompositeRefactoring Require case by case analysis
- Specify
preconditions() - Validate
privateTransformy()

- Composite preconditions
- Component preconditions

44

Future work: a large effort

* Continue eliminating code duplication between refactorings and
transformation

* | everage composition of refactorings where possible
 Migrate to Commander2.0
 Migrate all Ul to Driver

e A lot more to...

45

New architecture for the future :)

 Many many hidden improvements
* Driver for interactive application
e Clear roles for Transformations and Refactoring:

* A refactoring is a decorator of a transformation

o Better separation of concerns e T .
O _ : Refactorings — — Changes |
_, Drivers > | : !
w - _?— ParseTreeRewriter |
0 - > 5 | &
e o
| =< % é;é g g g %z) =
-~ — (@)
Still some work but the path is clear , :
Ul : Program Model

46

