Pharo: a reflective language
A first systematic analysis of reflective APlIs

lona Thomas, Stephane Ducasse, Pablo Tessone, Guillermo Polito

IWST 2023 - 29/08/2023

2 L Universite
(rezia— SKEl % BRI LL de Lille

What is reflection ?

“Reflection is the ability of a program to manipulate
as data something representing the state of the
program during its own execution.”

1. R.G. Gabriel and D.G. Bobrow and J.L. White. CLOS in Context - The Shape of the Design Space. In Object OrientedProgramming - The CLOS perspective. MIT Press, 1998.

2

Reflection by example

instVarNamed: aString put: aValue
"'Store 1nto the value of the instance variable i1n me of that name. Slow, but very useful.

We support here all slots (even non indexed) but raise a backward compatible exception”

A self class

slotNamed: aString
ifFound: [:slot | slot write: aValue to: self]

ifNone: [InstanceVariableNotFound signalFor: aString asString]

Reflection categories

Often separated in 3 subcategories :
* |Introspection
e Self-modification

e |ntercession

8

Italian

Rangpurl - Chitta- : | 3 ’ i & ‘? s
. gonian) - : - : \ i g
- : ’ o~ . Y : ap s d
* ? Bhojpuri > oy h : ' \ Portugucsc i e Venetian
‘.. lAssamesc Syl etigd Y : ' , . . Piemontese
. Romansch 7

Emiliano

Ligurian

,’ Maithili

Kon-
kom Goan

% B % Lombard
a‘gah. 'f Marathi e

Deccan
French

¢ Chhattis- = o ' s
5, SR 7 » - Russian u" ey
Baghc" r Awadhi- ' : :

Fijia m
hindi

v
8 S5 . ll.o
" Slovak ‘- v i

Or;ya
‘ & Belarusian Corsican N,

Sanskrit

3 _
~ c y
Kumaoni o '7 o Bhili o ; Sardinian '
5 (l;arhwali \ J\/\ (5(\ Bhilali g8 ,;t'? ’ ‘\) =
PN Wagadi JJ /4N Polish Lithuanian S 25" . En llSh
Smhala '% "o: ., Bosnian Latvian i > - :
. . n \ 0 ' - ; Swabian ,
Nepali Dogtl O‘Q"/ e /)F ’)6, > 7 Czcch Croauan: 5 . g Hunsrik

€ Maldivian : . Bavarian
» Kangri ya o . : - - j ,

Mandeali .éo by X X v ; X :) =
Mahasui ’)n S _ < _ - - Swiss
Sindhi 2 Lo :

- ’
o 4 Kashmiri
]

\’ (\oﬁtﬂwé STEQ-O ‘ , . G'crman o . 4
- M Gaelic . . ’ Sc .'
: cots

Frisian

Panjabi r Mirapuri Welsh wG‘St
S d Hin C ish 2 Gef‘mah‘(.
- P : .ornish#y : \ A
$ Ossetian Breton nOQ t/') 1(, Afﬂkaans DutCh

ef‘ma 0/, 9') NCL ¥

Com an
kt Flcmlsh

Talysh * Pashto } . : : ' Icelandic
Dimli :

? Faroese @ (

Gilaki : ; , "

‘ _ ¢ S { " Q-'O / Danish g, Swedish.
Baluchi A o ; .\ : Q? /

o

s B, " # _Inpo-EurorPeEan T, 89,
URALIC

Samoyedic iy

Norwcglar;

Komi

~L LANGUAGE FAMILIES ~ Udiaca

\
e-family-tree-in-pictures

Why an analysis of reflective features ?

Language evolution :

bbbbbbbLLHLHOLOOObObObbbObbODODOODODDODDODODODDDODO OSSOSO SSS
AN Ol 8RR RERYUBBEIRBRRNERAIIIEEESBRERRIREIRAIRBSsER
Enfin i
ObjectStudio
Easel
Byte Magazine articles Cincom Smalltalk (VW + QS)
Cincom
Smalltalk-80
Xerox
Steve Jobs
demo
VSE #Smalltalk
Digitalk Refactory
Hewlett Packard
ObjectShare
VASmalltalk
|lnstantiations Instantiations
Tektronix Smalltalk VisualAge/S IBM Smalltalk
Tektronix |
OTI Smalltalk Amber
OTI
Servio }
DEC GemStone
GemStone |
UC Berkley ~
VMWoare Phar@
Apple Smalltalk Pharo e ‘ ,
Apple | |
Squeak
Object Arts
OA + Lesser
GNUSmallealk
Smalltalk/X
ACC eXept
Smalltalk MT
Object Connect
Strongtalk Strongtalk
Animorphic I |
Java Hotspot VMM
Sun

Why an analysis of reflective features ?

Language evolution : Understand current state of
cgahbobob bbb bbb oot 8s8S888888¢¢8°28 refIGCtion :
o ObjectStudio
e S * Years of organic evolution
’ obs lObjectW ks VisualWorks A
sna " I » Outdated documentations :
B » Smalltalk-80: The Language and Its
e Implementation (83) (Blue book)
P— = Smalltalk: a Reflective Language (96)
e — | ANSI Smalltalk (98)
L - * New concepts : Pragmas, Slots,

Packages ...

Why an analysis of reflective features ?

Evolution of the structural pharo meta-model

inherits from

ClassVariable l

has

Pragma

InstanceVariable |< Class ®s! CompiledMethod has

Selector
Slot refers tc/ \)mposed of
SharedPools | | Trait m

Why an analysis of reflective features ?

Once we understand the current state, we can:

* (Re)design the MOP
e Modularize some of the reflective API

o Study reflection from security/stability point of view

Goals

* Create a catalog of reflective API
* Analyse meta-objects
* Analyse reflective APIs

* Highlight areas of improvements

arbitrary method/

state acess

T T primitive execution Identity - o o .
RN I - - - . .
: T - - memory iteration - ------ 1 Memory :
: Slot DRSS contains -----------1 Object [___ - |) :
! S I P editing pointers -7
: ™. instance variable) DY to an object - __
! h ue / S ol T
: definesfq i «_ object adoption ~~ . accessing instances Reference
. “~o / _ ,\4\‘\ ,
. |Class Variable BN / - -~ IEEERRTIRES ASRRTRLTRL
! - - class variable > L - ~o | !
| _ - |
! query == reflective message send N _____ Lo __
B Class N | . R—
: ____ contains T "~~~ Y :
| . - TV S Sl Tt~ \ reference to
'l selector/methods 7 1\ "\ T>o_ -~ \
1 / \ S e I
I access S \ . ~ \Iczokup (messages/varlakzles) Legend
B and iteration)/ | \ N) \ \
: contains , | \ \ . message not understoad \ |
| , K [\ N N AN \ Metaobject
I A4
| _)/ selectors \ class creation AN '\ \ Implementation object
| Compiled / \ o .
— - Method method query \\ Missing object
: hierarchy navigation . Group of reflective
; | features related to
contains ClassBuilder/ Reflective features’
5 Installer relations with objects
A4
_ e | Relations between
Compiled i | | objects
Block . Runtime !
': :- ——————————— e S
: |
:___‘ |
" becomes at runtime __J__» Block)
_ : Closure | oo " Context Environment Message MessageSend
A map of some reflective |
= = : v /, \\ o~ N
features and their meta-objects T R
| - \ N
| Thread sender/receiver Y context hierarchy
| 11 current method/arguments
|

Categories

Object inspection

Acessing object

State inspection dentity

Acessing object
class

Object modification

State
modification

Manipulating Object’s class
object identity change

Class structural inspection

Class structural modification

Class / Selectors and Variable look Cl " Selectors /methods
Metaclass shift methods inspection ariabie 100Kup ass creation modification
. . SharedPools Instance variable Slot SharedPools Instance variable
Slot inspection e L e o o .
Inspection inspection modification modification modification
Pragma lterating and Class variable Hierarchy Class variable
J querying hierarchy inspection modification modification
Message sending and code execution Memory scanning Method creation
Reflective Arbitrary method/ Memory Instances of Compiled
message send primitive execution Method lookup scanning a class method creation
Message send Control message
reification passing
Structural queries on Method Stack Chasing and atomic pointer swapping
Method slot Method element Stack . . Bulk pointer
Context . . Find pointers to .
uses references manipulation swapping
12

Accessing instance variables

Object inspection Object modification
ﬁ ‘1 Acessing object | | Acessing object) Manipulating Object’s class
identity class object identity change
* Object>>InstVarAt: * Object>>InstVarAt:Put:

* Object>>InstVarNamed: e Object>>InstVarNamed:Put:

Accessing instance variables

API
Object inspection ; | Object modification
i Acessing object | | Acessing object 71: State Manipulating Object’s class
identity class || modification || | object identity change
|
* Object>>InstVarAt: e Object>>InstVarAt:Put:
* Object>>InstVarNamed: e Object>>InstVarNamed:Put:

* ProtoObject>>InstVarsinclude:

e Context>>objectSize:

Accessing instance variables

Uses and potential improvements

Object inspection - Object modification

State i

" | Acessing object | | Acessing object |
modification |l

identity class

Manipulating Object’s class
object identity change

A <l == ~—

Current uses :

* Copying objects

» Serialising objects

* Printing objects

* |nspecting objects

* Checking references

* Jesting, including for some fields
without getter methods

Accessing instance variables

Uses and potential improvements

Object inspection ; | - Object modification
ﬁ ' Acessing object | | Acessing object State Manipulating Object’s class
identity class modification [| object identity change
Current uses: Areas of improvement :
* Copying objects * No solution for intercession on

. Serialising objects state read/write

* Printing objects
* |nspecting objects
* Checking references

* Jesting, including for some fields
without getter methods

Changing the class of an object

Object modification

o ——

State Manipulating | || Object’s class [

modification object identity

API
 Behavior»adoptlnstance:
 Metaclass»adoptinstance:from:

* Object»primitiveChangeClassTo:

Changing the class of an object

Object modification - | Uses :
State Manipulating ,“1: Og‘bject’s Cla)ss;ﬁ _ _
modification object identity | | ° Proxy Implementation
 Updating instances to the new
API version of a class

 Behavior»adoptlnstance:
 Metaclass»adoptinstance:from: Areas of improvement :

* Object»primitiveChangeClassTo: » Constraints on same class format

e« Some state can be lost (class
builder)

What is next ?

* Assess potential safety issues
e Better understand how the reflective feature are used

 Modularisation of some reflective operations

19

More In the paper!!

Pharo: a reflective language — A first systematic

analysis of reflective APlIs o Memory Scanning

Iona Thomas’, Stéphane Ducasse’, Pablo Tesone' and Guillermo Polito’

'Univ Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL. ® StaC k M an | p U I at | on

Abstract
Reflective operations are powerful APIs that let developers build advanced tools or architecture. Reflective '
operations are used for implementing tools and development environments (e.g., compiler, debugger, " mm a n d m O re .
inspector) or language features (e.g., distributed systems, exception, proxy, aspect-oriented programming).
In addition, languages are evolving, introducing better concepts, and revising practices and APIs. As such,
since 2008 Pharo evolved and was built on Squeak which changed from the original Smalltalk reflective
APIs. Pharo has one of the largest reflective feature sets ranging from structural reflection to on-demand
stack reification. In addition, new metaobjects got integrated such as first-class instance variables. Finally,
reflective facilities are mixed with the base-level API of objects and classes and reflective features are
heavily used by the system tools.
Getting an understanding of such API is, however, tedious when the API is large and evolved over a
decade. There is a need for a deep analysis of current reflective APIs to understand their underlying use,
potential dependencies, and whether some reflective features can be scoped and optional.
In this article, we analyze the reflective operations used in Pharo 11. We classify the current reflective
operations in different families. Also, we identify a set of issues raised by the use of reflective operations.
Such an analysis of reflective operations in Pharo is important to support the revision of the reflective
layer and its potential redesign.

Keywords

Reflection, Meta-object protocols

Key Takeaways

Contributions : Why read the article ?

* A Catalog of reflective API * Discovering the reflective API of Pharo

* Analysis on meta-objects * Digging into Pharo MOP design

* Analysis on reflective APls * Implementing some of the suggested
Improvements !

* Areas of improvements for the
reflective API

2 L Université
&’ cll— 3] % RISAL L de Lille

The Limites of Intercession

| Sending a message |

| ThrowaDNU |

The Limits of Intercession

| Sending a message |

No high-level APl to do
Intercession here

. ThrowaDNU | }Applying the method]

