Garbage Collector Tuning

In Pathological Allocation Pattern Applications

Nahuel Palumbo - Sebastian Jordan Montano - Guillermo Polito - Pablo Tesone - Stéphane Ducasse

B4 nahuel.palumbo@inria.fr IWST ’23

&
2 &; Py Evref @ RIStAL u bjgi&ﬁgsité

mailto:nahuel.palumbo@inria.fr

Motivation

“Pharo i1s slow”

I e A — e A e A I e I —

My application takes >1h30m }

R ————— R — e e —— e e —— e

Wty |
. doing?

S ——————————

e ———— ———————

—_—
Loading a 3GB |

I N
VM Devel
Pharo-Al Developers - E Eiiei- / evelopers
Ok, let’s see the |

['memory management |

—— e e _‘-:;d

2

Motivation

“Pharo The GC is slow”

Data size Total time (sec) GC time (sec) GC overhead
529 MB 43 / 16%
1.6 GB 150 38 257
3.1 GB 5599 5158 92%
x = [Playground v
> B @ B -
@ 1| DataFrame readFromCsv: pathToFile asFileReference.
DataFrame

+L

Motivation
“Pharo The GC is slow”

Data size Total time (sec)
529 MB 43 ~1min
1.6 GB 150 =2.5min
3.1 GB 9599 >1h30m
x = 0O Playground v
2 B =

Doit Publish Bindings Versions Pages
1| DataFrame readFromCsv: pathToFile asFileReference.

DataFrame +L

Motivation

“Pharo The GC is slow”

Data size

3X< 529 MB

1.6 GB
2x i 3.1 GB

o

DataFrame

GC overhead

167 ~ 1.5
25% >
929 >3.6x

- O Playground v

> [] B =

t Publish Bindings Versions Pages

1| DataFrame readFromCsv: pathToFile asFileReference.

+L

Motivation
“Pharo The GC is slow”

3.1 GB 5599 >1h30m 5158
x = [Playground v
N B =

Doit Publish Bindings Versions Pages
1| DataFrame readFromCsv: pathToFile asFileReference.

DataFrame +L

Memory Management

Garbage Collection

Manually Memory Management

A work for devs?

R S R e

Fdata = malloc(size)

|
t... use data ...
H

r
kfree(data)

I E— I I S—

Manually
Memory Management

Automatic Memory Management

Garbage Collectors

Manually
Memory Management

Automatic Memory Management

Garbage Collectors

Manually
Memory Management

Developer

Automatic Memory Management

Garbage Collectors

Manually
Memory Management

Developer

Application’s Allocation Patterns

How do the applications use the memory?

1
|
|
|
|
|
|
|
|
|
|
|

Memory

Q\ Allocatlons are particular for each application

-~ Hard to predict ‘
There are some general heuristics

~ Easy to predict *

R R R e _ e

12

2002

Memory address

_l o

Application’s Allocation Patterns

Weak generational hypothesis

Will you use it again?

data = Data new

. first use of data ...

'No, you can fre
900y, |NO, you can free

. the memory

o —————— e

—

<10% : Yes, keep it!
L

e - e . e R R e —

“Most of the objects die young’q

e ——— e e e e e e

PPPPPPPPP?P

e

e e — e

e

Application’s Allocation Patterns

When an object dies?

ROOT O\ o
LA

e ———————— o ———————— . e e R e e ———— e

O

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

ROOT O\ o
LA

e ———————— o ———————— . e e R e e ———— e

O

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

ROOT K .
—

0 et—C

O

e ———————— o ———————— . e - e R e e ———— e

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

—_—

Q O ~

O

e ———————— o ———————— . e - e R e e ———— e

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

ROOT O\ o
RV

e ———————— o ———————— . e - e e e e ———— e

O

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

—_—

@ C ~

O

e ———————— o ———————— . e - e R e e ———— e

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

—

e ———————— o ———————— . e - e R e e ———— e

[“Must be accessible from the roots”

e e e R e e e e

Application’s Allocation Patterns

When an object dies?

ROOT K ’
—

9 —
%O

O

e ———————— o ———————— . e R - e e e R ———— e

[“Must be accessible from the roots”

e e e R e e e e

Generational Garbage Collector

High-Performance Automatic Memory Management for OOP

ROOT

Remesne‘fered Roots of the New Space (write barrier)

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

Generational Garbage Collector

High-Performance Automatic Memory Management for OOP

ROOT

Remesne‘fered Roots of the New Space (write barrier)

r e ——————— e

LCan growﬂ

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

Generational Garbage Collector

High-Performance Automatic Memory Management for OOP

ROOT

(F':‘tST) L»Scavenge Roots of the New Space (write barrier)
often

r e ——————— e

Can growﬂ
L=

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

Generational Garbage Collector

High-Performance Automatic Memory Management for OOP

S &—\ ,‘—J
[(F?tST) L'*SC avenge Roots of the New Space (write barrier)
often

.
J .
e — ‘
.
.
.
.
.
.
.
.

SLOW I
i(<)ccasionjally)]"> FULL GC LC Ian ngVJ

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm

Pathological Allocation Pattern

Garbage Collectors’ problem

Weak generational V Few Full GCs V

Stable memory use Fast Scavengers

Long lifetimes x Many Full GCsx

Memory-starved Scavenger overhead

26

Pathological Allocation Pattern

Garbage Collectors’ problem

Weak generational V Few Full GCs V

Stable memory use Fast Scavengers

Long lifetimes x Many Full GCs
Memory-starved Scavenger overhead

AT § |

27

Pathological Allocation Pattern
Tuning the Garbage Collector

Pathological Allocation Pattern
Tuning the Garbage Collector

Pathological Allocation Pattern
Tuning the Garbage Collector

HEAP !
il et . ROOT

¥ New Space l Old Space
i

Pathological Allocation Pattern
Tuning the Garbage Collector

HEAP !
il et . ROOT

New Space l Old Space

Scavenge Set

___4,—/

Pathological Allocation Pattern
Tuning the Garbage Collector

HEAP !
il et . ROOT

New Space l Old Space

Scavenge Set

___4,—/

7=

Developer /=

How should | tune the GC
parameters for my application?

5O
\\ ,

AV,

Our methodology for GC tuning
1?‘

Profile GC events

Vg
DataFrame

— e e e S .

®
N

From Scavenges: _
e Amount of memory used (before and after). :Tuning
® Size of the Remembered Set (before and after). '
® Tenuring info (amount of data - threshold). |
® Executed time.

From FullGC:
® Time spent marking/sweeping/compacting.
® Executed time.

e e o

Developer

How Memory Grows

The overhead

FullGCs

S+

27 - __r__f_J
184 13+
94
0-|rr‘-rrj ' T '
1 254 508 761

Time
35

1015

How Memory Grows

The overhead

8+

13+

254 508 761 1015

Tim

36

How Memory Grows

The tuning solution

FullGC Ratio - Threshold for triggering a FullGC

Q when the old space grows more than expected

Minimum amount of

Grow Headroom -
memory that the GC will order from the OS

37

|

|1 will load 3GB|

-«

X5

DataFrame

R

of data

How Memory Grows

The tuning solution

y

FullGCs

0+ . '
1 937
- - 38

How Memory Grows

The tuning solution
‘ 1% - 5% faster! ’

| Just that?

y

FullGCs

1
S®] 937
39

Developer

Generational clash

ms]

[

Time

417

Deeper in the allocation pattern

3124

2081

104 4

1 234 468

Scavenges

52X

N N

702

936

Generational clash

ms]

[

Time

417

3124

2081

104 4

Deeper in the allocation pattern

234 468

Scavenges

52X

702

936

BIG
OVERHEAD

Deeper in the allocation pattern

Generational clash

Remembered
Scavengg Roots of the New Space

Deeper in the allocation pattern

Generational clash

Remembered Roots of the New Space
Scavenge Set

43

Deeper in the allocation pattern

Generational clash

Remembered
Scavengg Roots of the New Space

Deeper in the allocation pattern

Generational clash

Remembered
Scavengg Roots of the New Space

Deeper in the allocation pattern

Remembered Set overhead

The Remembered Set is large (lot of objects) x * No chart :(*

The objects in the Remembered Set are large V @

DataFrame

46

Deeper in the allocation pattern
THE DataFrame

In the New
Space @
4

DataFrame

In the Old
Space

Long Scavenges

The tuning solution

Long Scavenges

The tuning solution
Close the @

DataFrame
door

Q Tenuring threshold - Desired number of objects New
Space

already in the New Space for tenuring to the Old Space

O,

CL055p,

49

Long Scavenges

The tuning solution

234 468

Scavenges

52X

702

50

936

1

234 468

Scavenges

702

936

Long Scavenges

The tuning solution

417

' 12.5X fast;rq
- — J21

/enges
Developer

52X

702

936

1

234

Scavenges

468

702

936

Conclusions

Final result

1) Have an infinite FullGC ratio To reduce the number of FullGC when the Old Space grows.

2) Have a grow headroom equal to the loaded file To avoid many FullGC together.

3) Keep all survivors in the semi-space To tenure new objects to the Old Space quickly.

. Total secs GC overhead Total secs GC overhead
Data size
before before after after
529 MB 43 16% 37 (1.1x) 5% (3.2x)
1.6 GB 150 25% 122 (1.2x) 7% (3.6x)
3.1 GB 5599 ~1h30m 92% 440 (12.5x) 24% (3.8x)

~7mins

53

Conclusions

Scavenge Set

___4,-—_/

FULL GC

54

Conclusions

Old Space

Scavenge Set

___4,-—_/

FULL GC

|_
104
“ 0
Developer

55

Conclusions

HEAP

DataFrame

>

Tuning

%

208 -

Scavenge Set

s]

Time [

104

- 0 ’ Ll
1 234 468 702 936
\ Developer Scavenges

FULL GC

My questions

 How much should devs know about their applications?
 How much should devs know about Garbage Collection algorithms?

 How much should devs know about the running VM?

5O
K)

57

Conclusions

HEAP

DataFrame

>

Tuning

%

208 -

Scavenge Set

s]

Time [

104

- 0 ’ Ll
1 234 468 702 936
\ Developer Scavenges

FULL GC

Conclusions

HEAP

%

208 -

ETuning

Scavenge Set

104+

0 T T =
1 234 468 702 936
\\ Developer Scavenges

Time [ms]

P

FULL GC

