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Motivation

“Pharo i1s slow”
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Motivation

“Pharo The GC is slow”

Data size Total time (sec) GC time (sec) GC overhead
529 MB 43 / 16%
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3.1 GB 5599 5158 92%
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Memory Management

Garbage Collection



Manually Memory Management

A work for devs?
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Automatic Memory Management
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Application’s Allocation Patterns

How do the applications use the memory?
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Application’s Allocation Patterns

Weak generational hypothesis

Will you use it again?

data = Data new
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Application’s Allocation Patterns

When an object dies?
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Application’s Allocation Patterns

When an object dies?
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Application’s Allocation Patterns
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Application’s Allocation Patterns

When an object dies?
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Generational Garbage Collector

High-Performance Automatic Memory Management for OOP

ROOT

Remesne‘fered Roots of the New Space (write barrier)

D. Ungar, Generation scavenging: A non-disruptive high performance storage reclamation algorithm
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Generational Garbage Collector

High-Performance Automatic Memory Management for OOP
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Generational Garbage Collector

High-Performance Automatic Memory Management for OOP
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Pathological Allocation Pattern

Garbage Collectors’ problem

Weak generational V Few Full GCs V

Stable memory use Fast Scavengers

Long lifetimes x Many Full GCsx

Memory-starved Scavenger overhead

26



Pathological Allocation Pattern

Garbage Collectors’ problem

Weak generational V Few Full GCs V

Stable memory use Fast Scavengers

Long lifetimes x Many Full GCs
Memory-starved Scavenger overhead

AT § |

27



Pathological Allocation Pattern
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Tuning the Garbage Collector
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How should | tune the GC
parameters for my application?
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Our methodology for GC tuning
1?‘

Profile GC events

Vg
DataFrame
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From Scavenges: _
e Amount of memory used (before and after). :Tuning
® Size of the Remembered Set (before and after). '
® Tenuring info (amount of data - threshold). |
® Executed time.

From FullGC:
® Time spent marking/sweeping/compacting.
® Executed time.
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How Memory Grows

The overhead

FullGCs
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How Memory Grows

The tuning solution

FullGC Ratio - Threshold for triggering a FullGC

Q when the old space grows more than expected

Minimum amount of

Grow Headroom -
memory that the GC will order from the OS
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How Memory Grows

The tuning solution
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How Memory Grows

The tuning solution
‘ 1% - 5% faster! ’

| Just that?
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Deeper in the allocation pattern
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Deeper in the allocation pattern

Generational clash

Remembered Roots of the New Space
Scavenge Set

43




Deeper in the allocation pattern

Generational clash

Remembered
Scavengg Roots of the New Space



Deeper in the allocation pattern

Generational clash

Remembered
Scavengg Roots of the New Space



Deeper in the allocation pattern

Remembered Set overhead

The Remembered Set is large (lot of objects) x * No chart :( *

The objects in the Remembered Set are large V @

DataFrame
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Deeper in the allocation pattern
THE DataFrame

In the New
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Long Scavenges

The tuning solution




Long Scavenges

The tuning solution
Close the @

DataFrame
door

Q Tenuring threshold - Desired number of objects New
Space

already in the New Space for tenuring to the Old Space
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Long Scavenges

The tuning solution
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Long Scavenges

The tuning solution
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Final result

1) Have an infinite FullGC ratio To reduce the number of FullGC when the Old Space grows.

2) Have a grow headroom equal to the loaded file To avoid many FullGC together.

3) Keep all survivors in the semi-space To tenure new objects to the Old Space quickly.

. Total secs GC overhead Total secs GC overhead
Data size
before before after after
529 MB 43 16% 37 (1.1x) 5% (3.2x)
1.6 GB 150 25% 122 (1.2x) 7% (3.6x)
3.1 GB 5599 ~1h30m 92% 440 (12.5x)  24% (3.8x)

~7mins
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Conclusions
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Conclusions
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My questions

 How much should devs know about their applications?
 How much should devs know about Garbage Collection algorithms?

 How much should devs know about the running VM?
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