
1

Towards Object-centric
Time-traveling Debuggers

Maximilian Ignacio Willembrinck Santander
 Steven Costiou
Adrien Vanègue

Anne Etien

2

Agenda

I. Context

II. Proposition

III. Our Work

Towards
Object-centric
Time-traveling

Debuggers

● Debugging is a time-consuming task.

● Involves repetitive and tedious manual operations.

3

New debugging tools…

Why?

● Debugging is a time-consuming task.

● Involves repetitive and tedious manual operations.

4

New debugging tools…

Why?

Debugging Valuable
Activities

● Debugging is a time-consuming task.

● Involves repetitive and tedious manual operations.

Debugging Valuable
Activities

5

New debugging tools…

Why?

● Debugging is a time-consuming task.

● Involves repetitive and tedious manual operations.

6

New debugging tools…

Why?

StepInto StepOver

Breakpoints Repeat

Debugging Valuable
Activities

7

New debugging tools…

Why?

Debugging is hard.

We saw an opportunity to improve the debugging
experience.

8

Debugging Objects is Challenging:
An Example

assert:

splitOn:

equals:

Produces 3 OrderedCollection

9

Debugging Objects is Challenging:
An Example

There is an OrderedCollection instantiated
somewhere during that call.

“I want to see how its instance variables evolve”

10

Debugging Objects is Challenging:
An Example

There is an OrderedCollection instantiated
somewhere during that call.

“I want to see how its instance variables evolve”

1. Find the object

2. Specific object
debugging operations

To instantiation instruction

Conventional Debugging

Many steps /
uncomfortable conditional breakpoints

11

Debugging Objects is Challenging:
An Example

1. Find the object

2. Specific object
debugging operations

Are there special tools to make
these task easier?

● What is Object-centric debugging [1]?

○ Makes objects the focus of debugging operations.

○ Debugging operations are defined to answer developer questions
related to runtime behavior of objects.

○ Object-centric Debugging operators examples:

■ Halt on read
■ Halt on write
■ Halt on call

12

Object-centric debugging?...

[1] J. Ressia, A. Bergel, O. Nierstrasz, Object-centric debugging, in: Proceeding of the 34rd international conference on Software engineering, ICSE ’12, 2012.

● It helps debugging when:

○ Developers debugging questions are closer to the objects
which model the domain.

○ Developers wants to follow an object behavior, avoiding
traditional breakpoint management tediousness. e.g: “I want to
see how its instance variables evolve”

● A prototype was presented and shown to be more effective supporting
typical debugging tasks than traditional stack-oriented debugger.

13

Object-centric
A promising debugging approach for OOP[1]

[1] J. Ressia, A. Bergel, O. Nierstrasz, Object-centric debugging, in: Proceeding of the 34rd international conference on Software engineering, ICSE ’12, 2012.

● Scoping debugging operations (such as breakpoints) on specific
object is difficult!

○ Devs must initially find such object identity first.

○ Manually step to the object of interest, or step through
breakpoints hits to find it.

14

The problem...

● Scoping debugging operations (such as breakpoints) on specific
object is difficult!

○ Devs must initially find such object identity first.

○ Manually step to the object of interest, or step through
breakpoints hits to find it.

15

The problem...

TEDIOUS AND
ERROR-PRONE MANUAL

WORK!

● Scoping debugging operations (such as breakpoints) on specific
object is difficult!

○ Devs must initially find such object identity first.

○ Manually step to the object of interest, or step through
breakpoints hits to find it.

 If only there was a way to fix this ...

16

The problem...

TEDIOUS AND
ERROR-PRONE MANUAL

WORK!

● Main features: reverse a program execution and deterministic replay.

○ With these debuggers, any stepping error can be amended by
stepping back. (Stepped too far? No need to restart, just take a
step back).

○ Developers want to check a past state of the program? No need
to restart, just reverse it. e.g: reverse to an object instantiation.

17

Time-traveling debuggers

● To the best of our knowledge, time-traveling solutions
don't provide object-centric debugging operators.

18

There is another problem…

● Improves debugging experience in OOP.

19

Context summary

Object Centric
Debuggers

Time-Traveling
Debuggers

● Sill tedious and error prone.

● Improves tediousness, and debugging/stepping
mistakes are less costly.

● So far, no support for object-centric debugging.

● Improves debugging experience in OOP.

20

Context summary

Object Centric
Debuggers

● Sill tedious and error prone.

?
Time-Traveling

Debuggers

● Improves tediousness, and debugging/stepping
mistakes are less costly.

● So far, no support for object-centric debugging.

21

Agenda

I. Context

II. Proposition

III. Our Work

Towards
Object-centric
Time-traveling

Debuggers

22

Our proposition

?
? ?

1. New debugging
tools for OOP

23

Our proposition

?
? ?

1. New debugging
tools for OOP

2. How to combine them?

Second general question:
How to combine them?

24

How to combine them?

Our answer:
Time-Traveling Queries

How?

25

Combining both techniques
Time-Traveling Queries*

(*) M. Willembrinck, S. Costiou, A. Etien, S. Ducasse. Time-Traveling Debugging Queries: Faster Program Exploration.
International Conference on Software Quality, Reliability, and Security, Dec 2021, Hainan Island, China.

What is the value of this variable during execution?

On step 1 value changed from nil to 100
On step 4 value changed from 100 to 200
On step 40 value changed from 200 to 0
…

26

Combining both techniques
Time-Traveling Queries*

Find execution data and explore your execution
conveniently from the Query Results

(*) M. Willembrinck, S. Costiou, A. Etien, S. Ducasse. Time-Traveling Debugging Queries: Faster Program Exploration.
International Conference on Software Quality, Reliability, and Security, Dec 2021, Hainan Island, China.

We developed SeekerOC and an

Enhanced Pharo Inspector to improve the

debugging experience.

 Made for Pharo 10.

27

Combining both techniques

With Time-Traveling Queries

28

Agenda

I. Context

II. Proposition

III. Our Work

Towards
Object-centric
Time-traveling

Debuggers

29

Improving Debugging Challenges:
Back to the example

1. Find the object

There is an
OrderedCollection

instantiated somewhere
during that call.

“I want to see how its

instance variables
evolve”

2. Specific object
debugging operations

assert:

splitOn:

equals:

Produces 3
OrderedCollection

30

Improving Debugging Challenges:
Back to the example

We made tools
to make this

easier!

assert:

splitOn:

equals:

Produces 3
OrderedCollection 1. Find the object

2. Specific object
debugging operations

31

NEW OOP DEBUGGING TOOL

I. SeekerOC
1. Easy objects finding and identification using TTQs

Lists all OrderedCollection objects instantiated during the test

32

NEW OOP DEBUGGING TOOL

I. SeekerOC
1. Easy objects finding and identification using TTQs

The listed objects can be directly inspected.

33

NEW OOP DEBUGGING TOOL

II. Enhanced Pharo Inspector
2. Easy object and variables tracking, using Object-Centric TTQs.

34

NEW OOP DEBUGGING TOOL

II. Enhanced Pharo Inspector
2. Easy object and variables tracking, using Object-Centric TTQs.

For SeekerOC and Enhanced Pharo Inspector.

○ Time-traveling back end providing deterministic reverse and replay.

○ Support for Time-Traveling Queries.

○ Express (new) Time-Traveling Queries.

35

Implementation,
Requirements

Repository url: https://github.com/Willembrinck/SeekerOC-2022

36

Implementation

SeekerOC
Finding objects with TTQs

How it works?

Queries Menu

Query Results

37

Implementation

SeekerOC
Finding objects with TTQs

#OrderedCollection

Time-traveling debuggerQueries Context Menu

Iterable collection of
ProgramState

The command
executes a

Time-Traveling
Query

38

#OrderedCollection

Implementation

SeekerOC
Finding objects with TTQs

Time-traveling debuggerQueries Context Menu

“Iterable” collection of
ProgramState

What program states
are relevant?

What should be
included in the results?

From where to
extract the data?

39

#OrderedCollection

Implementation

SeekerOC
Finding objects with TTQs

Time-traveling debuggerQueries Context Menu

“Iterable” collection of
ProgramState

What program
states are relevant?

What should be
included in the results?

From where to
extract the data?

ProgramState:

API to access execution
data.
API Example:

Method Returns
context Context
isMessageSend Boolean
messageReceiver Object

40

Collected results are
displayed in the Query

Results table

Implementation

SeekerOC
Finding objects with TTQs

41

Implementation

Enhanced Pharo Inspector
Bound to an “OID”,

not an object

OID to write Object centric Time-Traveling Queries

42

Implementation

Enhanced Pharo Inspector
Object-centric TTQs, example

Bound to an “OID”, not an object

Queries uses OID for
selection predicate

#lastIndex
67

Our work

What other TTQs can boost object-centric
debugging?

Open research
subjects

What are TTQs limits to express
object-centric debugging operators?

Benefits of using such debuggers?
(Empirical experiments)

43

Perspective

44

1. New OOP Debugging Tools

SeekerOC

Time-Traveling Queries

Enhanced
Pharo

Inspector

&

2. How to join both techniques
Our work

Other TTQs for OC debugging?
Open research
subjects

TTQs limitations?

Benefits? (Experiments)

Contribution

Perspective

Towards Object-centric Time-traveling debuggers

