Transformation-based
Refactorings: a First Analysis

N. Anquetil, M. Campero, S. Ducasse, J.P. Sandoval and P. Tesone

International Workshop on Smalltalk Technologies

Outline

Vocabulary

About the need of transformations
Research questions

Why RB engine?

Analyses and results

Vocabulary

* Refactoring: behavior preserving modification of the source
code.

* Transformation: behavior agnostic modification of the source
code.

* Pre-condition: a condition to hold before applying a refactoring

* Atomic refactoring: A refactoring that is not implemented using
some other refactorings

« Composite refactoring: Not Atomic.

* Elementary operation: A local modification of a program

Outline

e Vocabulary

* About the need of transformations
 Research questions

 Why RB engine?

* Analyses and results

Replace Call x by y

foo foo
self x selfy
X X
doing something * doing something
y y
doing something else doing something else
bar bar

t x ty

Replace Call Analysis

This is not a refactoring because there is no warrantee that after the
application behavior stays the same

Replace Call Analysis

e Cannot easily be expressed with Rename Method Refactoring

 Now the implementation is close to Rename Method
* Look for all the senders

* Replace all the senders with the target method

Need for transformation too

* Developers are often left alone and do it manually

* There is a need for transformations as well as refactorings

Goal of the study

* Could both refactorings and transformations share their code
modification logic?

* Could we decouple code transformations from refactorings to be
able to reuse them when behavior preservation is not a concern?

 Could we compose refactorings from such code
transformations?

Correlated questions

* Should we turn elementary operations into transformations??

* At which cost complex refactorings be expressed out of simpler
ones?

Contributions

* An analysis of the original implementation of Refactorings.
* The identification of different kinds of pre-conditions

* Understanding program modification API

 |dentify atomic refactorings

* The identification of missed reuse opportunities in current
refactorings implementation

 Path for the real work

Why RB engine?

e Seminal work

e Documented in PhD of D. Roberts

* Available and fully working

* Nice architecture (compared to mainstream engines)

* preview

e support off line code

TTTTmoTemmmeeeeeS oo .

! Refactorings — — Changes !

| | I |

| | ! |

| ParseTreeRewriter ! | :

__________________ e e e =4
T] B 1
| Y] O |
K e T 1 g
I — g‘ 8_ I
| — X By X X — I
! || T | | W||TW|| T 3]!
: Sllol|lz||S|IZ|]|Z =Bt
: AENENEENE :
| slisllal|l&]|8]]8 |
| oy 8 Q ® 8 |
| Q Q @) |
| QO Q o) |
I wn (7)) |
| » » |
: Program Model :

Applying a refactoring

The architectural elements

* A refactoring reason on a program model
* Check preconditions on such a program model
 Produces changes that can be previewed

e Then actual modifications are done

e e — - - = = e - - - —— =

————————————————————————————————————

SSe|IOgY [—

Sse|D1oeNsqvay —

ssejoevNgY —

Program Model

Outline

Vocabulary

About the need of transformations
Research questions

Why RB engine?

Analyses and results

Precondition Analysis

4 Families

* None
* Applicability check
 Break check

« Complex ones

Precondition: None

Looks like there were added by developers not following the design

Should really be revisited

Precondition: None

- Abstract Class Variable - Extract Set Up Method And Occurrences
- Abatract Variables - Expand Referenced Pools

- Category Regex

- Class Regex - Protocol Regex

Extract Method To Component Source Regex

Precondition: Applicability

Verifies that the program elements are available

Precondition: Applicability

RBCreateAccessorsForVariableRefactoring >> preconditions

N classVariable

ifTrue: [RBCondition definesClassVariable: variableName
asSymbol in: class |

ifFalse: [RBCondition definesinstanceVariable: variableName in:
class |

Precondition: Applicability

Abstract Instance Variable
Accessor Class

Add Class

Add Class Variable

Add Instance Variable
Add Method

Add Parameter

Children To Siblings
Copy Class

Copy Package

Create Accessors For Variable
Create Cascade

Create Lazy Initialization

Move Inst Variable To Class
Move Method To Class
Move Method To Class Side
Move Variable Definition
Protect Instance Variable
Pull Up Class Variable

Pull Up Instance Variable
Push Down Method

Realize Class

Remove All Senders

Remove Hierarchy Method

Deprecate Class
Deprecate Method
Extract Method And Occurrences
Extract Set Up Method
Extract To Temporary
Find And Replace

Find And Replace Set Up
Generate Equal Hash
Generate Print String
Inline All Senders

Inline Method

Inline Parameter

Merge Instance Variable Into Another

Rename Argument Or Temporary
Rename Class

Rename Class Variable

Rename Instance Variable
Rename Method

Rename Package

Replace Method

Split Cascade

Split Class

Swap Method

Precondition: Break check

* None
* Applicability check
 Break check

« Complex ones

Precondition: Break check

* None
* Applicability check
 Break check

« Complex ones

Precondition: Break check

* Verifies if the operation is done whether the system would be
broken

Precondition: Break check

RBRemoveClass >> preconditions
A classNames
inject: self emptyCondition

into: [:sum :each | | aClassOrTrait |
aClassOrTrait := self model classNamed: each asSymbol.

aClassOrTrait 1fNil: [

self refactoringFailure: ’No such class or trait’].
sum & ((self preconditionIsNotMetaclass: aClassOrTrait)

& (self preconditionHasNoReferences: each)
& (self preconditionEmptyOrHasNoSubclasses: aClassOrTrait)
& (self preconditionHasNoUsers: aClassOrTrait))]

Precondition: Break check

Remove Parameter Remove Instance Variable

Remove Sender

Temporary To Instance Variable

Remove Class

Inline Method From Component

Remove Class Variable

Remove Class Keeping Subclasses

Push Down Class Variable

Push Down Instance Variable

Precondition: Complex

e Facing real code some things are not like in the books!

* Jo be cleaned up!

Precondition: Complex

RBPullUpMethod >> preconditions
self requestSuperClass.
A(selectors inject: (RBCondition hasSuperclass: class) into: [:cond :each | cond & (RBCondition definesSelector:
each in: class)]) & (RBCondition withBlock: [self checkInstVars.
self checkClassVars.
self checkSuperclass.
self checkSuperMessages. true])

RBPullUpMethod >> checkInstVarsFor: aSelector

class instanceVariableNames do: [:each |
((class whichSelectorsReferTolnstanceVariable: each) includes: aSelector) ifTrue: [(self confirm: (’<1p> refers
to #<2s> which is defined in <3p>. Do you want push up variable #<2s> also ?” expandMacrosWith: aSelector with:
each with: class))

ifTrue: [self pushUpVariable: each]

ifFalse: [self refactoringError: *You are about to push your method without the instance variable it uses.
It will bring the system is an inconsistent state. But this may be what you want. So do you want to push up
anyway?’ |]]

RBPullUpMethod >> pushUpVariable: aVariable

| refactoring |

refactoring := RBPullUplInstance VariableRefactoring model: self model variable: aVariable class:
targetSuperclass.

self performCompositeRefactoring: refactoring.

Contrary to common beliefs

 Transformations can have preconditions too!

Study the API of Program Model

 What is basically the API that is used to perform changes?

e Could such API turned into first class transformation?

RBAbstractClass

addInstanceVariable:
addMethod:

addSubclass:

compile:

compile:classified:
compile:withAttributesFrom:
compileTree:
convertMethod:using:
removelnstanceVariable:
removelnstanceVariable:ifAbsent:
removeMethod:

removeSubclass:

renamelnstanceVariable:to:around:

RBClass

addClassVariable:
addPoolDictionary:
addProtocolNamed:
comment:
removeClassVariable:
removeClassVariable:ifAbsent:
removePoolDictionary:
removeProtocolNamed:

renameClassVariable:to:around:

RBMethod

compileTree:

RBNamespace

addClassVariable:to:

Study the API of Program Model

addInstanceVariable:to:
addPackageNamed:
addPool:to:
addProtocolNamed:in:
category:for:

changeClass:

comment:in:
compile:in:classified:
convertClasses:select:using:
createNewClassFor:
createNewPackageFor:
defineClass:

description:
performChange:around:
removeClass:
removeClassKeepingSubclassesNamed:
removeClassNamed:
removeClassVariable:from:
removelnstanceVariable:from:
removeMethod:from:

removePackageNamed:

removeProtocolNamed:in:
renameClass:to:around:
renameClassVariable:to:in:around:
renamelnstanceVariable:to:in:around:
renamePackage:to:
reparentClasses:to:

replaceClassNameln:to:

Atomic refactorings and operations

* Analysed refactorings to identify atomic ones

* And also which ones are modifying the program model

Atomic refactorings and opere_ltions

 identify atomic

Class Used By

AddClass” ChildrenToSiblings, CopyClass, SplitClass

AddClassVariable® CopyClass

AddInstanceVariable® CopyClass, SplitClass

AddMethod” CopyClass

AddParameter

CategoryRegex

CreateCascade

DeprecateMethod

ExpandReferencedPools AbstractVariables, PullUpMethod, PushDownMethod

ExtractMethod ExtractMethodAndOccurrences, ExtractMethodToComponent,
FindAndReplace

InlineMethod InlineAllSenders

InlineParameter
InlineTemporary
ProtocolRegex
RealizeClass
RemoveClass®
RemoveClassVariable®
RemovelnstanceVariable®
RemoveMethod
RemoveParameter
RemoveSender
RenameArgumentOrTemporary
RenameClass
RenameClassVariable
RenameMethod
ReplaceMethod
SourceRegex
SplitCascade

SplitClass

RemoveAllAccessors

RenamePackage

Atomic refactorings and operations

e Studied the refactorings that directly use the program API
elements

* They could be turned into composite refactorings

e Could the program API elements be turned into first class
transformations?

Potential reuse

Potential reuse in implicit composite refactorings

Refactoring could use... ...instead of
ChangeMethodName RemoveMethod removeMethod:
CreateAccessorsForVariable AddMethod compile:
Cr.e.at?Acc'essorsWit'hLazy- AddMethod compile:
InitializationForVariable
DeprecateClass AddMethod compile:
GenerateEqualHash AddMethod compile:
GeneratePrintString AddMethod compile:
MovelnstVarToClass AddMethod . addMethod: and cqmpile:
RemovelnstanceVariable removelnstanceVariable
AddMethod addMethod: and compile:
pmveiisthodios i RemoveMethod removeMethod:

PullUpClassVariable
PullUplnstanceVariable
PushDownClassVariable
PushDownlnstanceVariable
RemoveMethod

SwapMethod

TemporaryTolnstanceVariable

RemoveClassVariable
RemovelnstanceVariable
RemoveClassVariable
RemovelnstanceVariable

RemoveMethod

AddMethod and
RemoveMethod

RemovelnstanceVariable

compile: and
removeMethod:

Conclusion

 Transformations can have preconditions too!

* Interaction should be removed from refactorings
* |ldentify Atomic refactorings

* |ldentify potential reuse in implicit refactoring

 Next step is to try to reify transformations and use them

