
 N. Anquetil, M. Campero, S. Ducasse, J.P. Sandoval and P. Tesone

Transformation-based
Refactorings: a First Analysis

International Workshop on Smalltalk Technologies

• Vocabulary

• About the need of transformations

• Research questions

• Why RB engine?

• Analyses and results

Outline

• Refactoring: behavior preserving modification of the source
code.

• Transformation: behavior agnostic modification of the source
code.

• Pre-condition: a condition to hold before applying a refactoring

• Atomic refactoring: A refactoring that is not implemented using
some other refactorings

• Composite refactoring: Not Atomic.

• Elementary operation: A local modification of a program

Vocabulary

• Vocabulary

• About the need of transformations

• Research questions

• Why RB engine?

• Analyses and results

Outline

foo

 self x

x

 doing something

y

doing something else

bar

t x

Replace Call x by y

foo

 self y

x

 doing something

y

doing something else

bar

t y

This is not a refactoring because there is no warrantee that after the
application behavior stays the same

Replace Call Analysis

• Cannot easily be expressed with Rename Method Refactoring

• Now the implementation is close to Rename Method

• Look for all the senders

• Replace all the senders with the target method

Replace Call Analysis

• Developers are often left alone and do it manually

• There is a need for transformations as well as refactorings

Need for transformation too

• Could both refactorings and transformations share their code
modification logic?

• Could we decouple code transformations from refactorings to be
able to reuse them when behavior preservation is not a concern?

• Could we compose refactorings from such code
transformations?

Goal of the study

• Should we turn elementary operations into transformations?  

• At which cost complex refactorings be expressed out of simpler
ones?

Correlated questions

• An analysis of the original implementation of Refactorings.

• The identification of different kinds of pre-conditions

• Understanding program modification API

• Identify atomic refactorings

• The identification of missed reuse opportunities in current
refactorings implementation

• Path for the real work

Contributions

• Seminal work

• Documented in PhD of D. Roberts

• Available and fully working

• Nice architecture (compared to mainstream engines)

• preview

• support off line code

Why RB engine?

Refactorings

RBM
ethod

RBN
am

espace

RBEntity

RBAbstractC
lass

RBPackage

RBM
etaclass

RBC
lass

Changes

AST
ParseTreeRewriter

C
ondition

Program Model

• A refactoring reason on a program model

• Check preconditions on such a program model

• Produces changes that can be previewed

• Then actual modifications are done

The architectural elements
Applying a refactoring

Refactorings

RBM
ethod

RBN
am

espace

RBEntity

RBAbstractC
lass

RBPackage

RBM
etaclass

RBC
lass

Changes

AST

ParseTreeRewriter

C
ondition

Program Model

• Vocabulary

• About the need of transformations

• Research questions

• Why RB engine?

• Analyses and results

Outline

• None

• Applicability check

• Break check

• Complex ones

4 Families
Precondition Analysis

Looks like there were added by developers not following the design

Should really be revisited

Precondition: None

Precondition: None

Verifies that the program elements are available

Precondition: Applicability

RBCreateAccessorsForVariableRefactoring >> preconditions

^ classVariable

ifTrue: [RBCondition definesClassVariable: variableName
asSymbol in: class]

ifFalse: [RBCondition definesInstanceVariable: variableName in:
class]

Precondition: Applicability

Precondition: Applicability

• None

• Applicability check

• Break check

• Complex ones

Precondition: Break check

• None

• Applicability check

• Break check

• Complex ones

Precondition: Break check

• Verifies if the operation is done whether the system would be
broken

Precondition: Break check

RBRemoveClass >> preconditions
^ classNames

inject: self emptyCondition
into: [:sum :each | | aClassOrTrait | 
aClassOrTrait := self model classNamed: each asSymbol.
aClassOrTrait ifNil: [
self refactoringFailure: ’No such class or trait’]. 
sum & ((self preconditionIsNotMetaclass: aClassOrTrait)

& (self preconditionHasNoReferences: each) 
& (self preconditionEmptyOrHasNoSubclasses: aClassOrTrait)
& (self preconditionHasNoUsers: aClassOrTrait))]

Precondition: Break check

Precondition: Break check

• Facing real code some things are not like in the books!

• To be cleaned up!

Precondition: Complex

RBPullUpMethod >> preconditions 
 self requestSuperClass. 
 ^(selectors inject: (RBCondition hasSuperclass: class) into: [:cond :each | cond & (RBCondition definesSelector:
each in: class)]) & (RBCondition withBlock: [self checkInstVars. 
 self checkClassVars. 
 self checkSuperclass. 
 self checkSuperMessages. true])

RBPullUpMethod >> checkInstVarsFor: aSelector

 class instanceVariableNames do: [:each | 
 ((class whichSelectorsReferToInstanceVariable: each) includes: aSelector) ifTrue: [(self confirm: (’<1p> refers
to #<2s> which is defined in <3p>. Do you want push up variable #<2s> also ?’ expandMacrosWith: aSelector with:
each with: class))

 ifTrue: [self pushUpVariable: each] 
 ifFalse: [self refactoringError: ’You are about to push your method without the instance variable it uses. 
It will bring the system is an inconsistent state. But this may be what you want. So do you want to push up
anyway?’]]]

RBPullUpMethod >> pushUpVariable: aVariable 
 | refactoring | 
 refactoring := RBPullUpInstanceVariableRefactoring model: self model variable: aVariable class:
targetSuperclass.

 self performCompositeRefactoring: refactoring.

Precondition: Complex

• Transformations can have preconditions too!

Contrary to common beliefs

• What is basically the API that is used to perform changes?

• Could such API turned into first class transformation?

Study the API of Program Model

Study the API of Program Model

• Analysed refactorings to identify atomic ones

• And also which ones are modifying the program model

Atomic refactorings and operations

• identify atomic

Atomic refactorings and operations

• Studied the refactorings that directly use the program API
elements

• They could be turned into composite refactorings

• Could the program API elements be turned into first class
transformations?

Atomic refactorings and operations

Potential reuse

• Transformations can have preconditions too!

• Interaction should be removed from refactorings

• Identify Atomic refactorings

• Identify potential reuse in implicit refactoring

• Next step is to try to reify transformations and use them

Conclusion

