Improving Pharo

Snapshots

P. Tesone - G. Polito - N. Palumbo - ESUG’22
@tesonep pablo.tesone@inria.fr

@gquillep guillermo.polito@univ-lille.fr
@noTwitter nahuel.palumbo@inria.fr

leeda—

[MRIStAL

&

Université
de Lille

mailto:guillermo.polito@univ-lille.fr
mailto:pablo.tesone@inria.fr
mailto:nahuel.palumbo@inria.fr

2022 VM+ Team

ANTARCTICA

Copyright

©worldmapblank.com

Everything is an object

e Numbers

 Characters
e Strings /O
* Arrays KCSP(_ O

Everything is an object

e Numbers

e Characters ‘
e Strings . /O
* Arrays Q ’ .
* Closures ” C ‘ ()
7 C

0 X

Sy

O

Everything is an object

 Numbers
* Characters
e Strings

* Arrays

 Closures

e Classes

Everything is an object

e Numbers

 Characters

e Strings

* Arrays

 Closures

e Classes

* Methods

Everything is an object

e Numbers

 Characters

e Strings

* Arrays

 Closures

e Classes

* Methods

Lots of Objects

e Numbers

 Characters

e Strings

* Arrays

 Closures

e Classes

* Methods

‘Lots of Stress

n
o @) S
© © o O 8 T

— > 2 c
E ®©® &£ © @ @0 =
S © £ ¢+ O &8 o
Z O n <« O O =2
[J [J [J [J [J

‘Lots of Stress

* GC Skress

* Autocompletion Skress

* Search Skress

* Spotter Skress

* Startup Skress

Large Image Support

» Lifeware

o https://qgithub.com/pharo-project/largelmages

 MIT Licenced

:= README.md

it applies to images with a lot of code.

PR RSN

o o O pharo-project/largelmages X +

& C O B = https://github.com/pharo-project/largelmages

(D Tech [Research [JAdmin [JJapanese [J Cosas Argentinas Tableaunoir @ Pharo Days Tasks - ...

Large Image Support

It relies on two projects that have been integrated in Pharo 9:

e Spotter an iteration on the processor model of GTSpotter adding new processors that uses
a set of composable iterator to perform the queries incrementally.

These projects are already integrated and their maintainance will be done as part of Pharo

B &% @ Buscar © L O & ® =
(D Tech [JResearch [J Admin C]Japanese DCosasArgentinas »
Y 1tork
7
Releases

No releases published
Create a new release
This project includes a baseline to load a series of enhancements to Pharo. These
enhancements provide a better user experience when coping with large images. Large images
are images with a lot of objects, this objects are not only objects representing our data but also

No packages published
Publish your first package

e Complishon a new completion engine for Pharo that provides better contextual answers

and it is implemented to minimize the queries to the global system. Contributors '3

ﬁa estebanlm Esteban Lorenzano

Packages

Q tesonep Pablo Tesone

—

guillep Guille Polito

https://github.com/pharo-project/largeImages

Large Image Support: Highlights

« (Generator based searches
o Spotter

 Code Completion

generator
" generator 1fNil: |
generator := Generator on: [:g |
self entriesDo: [:entry |
(self acceptsEntry: entry)
1fTrue: [g yield: entry]] 1]

* GC Fine Tuning API

GC Fine Tuning

* Configure
* Eden Size
* Full GC Ratio
* Growth Headroom

 Shrink Threshold

GCConfiguration readFromVM
fullGCRatio: 1.0;
activeDuring: |

Lots of Objects

e Numbers

 Characters

e Strings

* Arrays

 Closures

e Classes

* Methods

Images = Heap Snapshots

e Numbers

 Characters

e Strings

* Arrays

 Closures

e Classes

* Methods

Snapshot Current Design Points

 Bootstrap once, then mutate
 Portable

* Object References are pointers

Heap
13 g
0O
/ |.oad code \
image « Create Objects image
‘ Run your app ‘

 Maybe GC!
 Repeat

But it could be better...

VM startup is bound by disk!

* Large heaps take long to load/save

 3-4GB heaps = seconds to GC < 0
BARYE
e pauses -
* long pauses / _f \

e | oad code

* Create Objects
‘ Run your app ‘
 Maybe GC!
 Repeat

Snapshots vs Runtime Memory Mismatch

_ Threads State
App and System Objects | = piects

.image

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

Current Loading Snapshot to Memory

_ Threads State
App and System Objects | = piects

Direct Mapping

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

Empty Rebuild Empty

| Start with a cold VM, |
: startup is slow |

Reference Swizzling

Hot Methods Thread : :
Process 1 Machine Code | Stacks | NéW Objects | Old Objects
Hot Methods Thread : '
Machine Code | Stacks New Objects | Old ObjeCt,'
Go)s
20,
os

* Traverse the heap to remap old references by delta

Process 2 T

* Slow for large heaps (2/4GB)

Current Snapshot to Disk

.image

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

_ Threads State
App and System Objects | = piects

Current Snapshot to Disk

.image

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

1.Discard

_ Threads State
App and System Objects | = piects

Current Snapshot to Disk

.image

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

2. Save as
objects

_ Threads State
App and System Objects | = piects

Current Snapshot to Disk

.image

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

3. Promote
to old

_ Threads State
App and System Objects | = piects

Current Snapshot to Disk

: : Threads State
.image App and System Objects o

‘

JIT Thread :

4. Save to
Disk

Old Objects

Current Snapshot to Disk

_ Threads State
App and System Objects | = piects

.image

‘

JIT Thread : :
@%ﬁi}@ Machine Code New Objects | Old Objects

| Discards all optimisations: |
. slow shutdown => slow |
startup |}

Goals

® faster loading

® [aster snapshot

® faster Multi-GB Heaps * @%@ *

DIDYOU SAY / | Mde \

* Create Objects

.image

B * Run your app R
- Maybe GC! *
* Repeat

Towards a Multi-file Snapshot Format

.J T Thread New Objects | Old Objects
image Machine Code Stacks

21 l Direct Mapping

JIT Thread : :
@%@ Machine Code New Objects | Old Objects

e System memory mapping

e Minimize Swizzling &

e Lazy loading of memory segments*

Multiple Memory Segments

.J T Thread New Objects | Old Objects | Old Objects’
image Machine Code Stacks |

21 l Direct Mapping

JIT Thread : : : ,
Machine Code New Objects | Old Objects | Old Objec’fs

=9

* Independently and lazy loadable &
 Independently storable #

New Memory Segments

.J it Thread New Objects | Old Objects [Perm Objects
image Machine Code | Stacks |

UEat l Direct Mapping
JIT Thread : : :
&

 Reduced garbage collection pressure ’y

» Great for opaque objects, and rarely changing objects
(code, literals...)

Semi-permanent Heap Segments

~— Track lot of objects,
~— collect only few f
~ ~ ~
O

O
P

Heap

OO0 O

&N

Separating Permanent Objects

* Permanent objects are roots
 But not all of them are roots
 We don’t want to iterate all permanent objects!

7 7 474 g7 74/
/. od) | Permanent
(7% % 7 \

Maintaining a Remembered Set

e (et the real roots in a remembered set

e Updated with a write barrier and cleaned at GC

Semi-permanent Object Selection

| Remembered |

Bad Semi-permanent Object Selection

| 08| [Permanent |

What objects should be permanent?

What objects should be permanent?

7 N /, - =
| Y 'y - Y J Y/ " ,
!) // Y [/ / D 7 N/
'44 = ’ / /
% N y (o /
| /
, / i ", </ ////,
\ LD ,, ’ s \///// 7
How T
~ inimise
[Remembered J How | embered co
\ objects? .

Pitfalls of Semi-permanent Object Selection

* The remembered set can explode easily. E.g.,

* Objects that reference nil, true, false are always remembered

* |f you make a class permanent
* =>you probably want to make its method dictionary too
* => and its methods, and literals

e =>and...

Potential: GC cut by half

G Relative Speedug

2,0x

PHeq sl JaYyvlH ——3>

* For production Apps! g
E 1,0x o—
=
S_J 0,5x
* Some Heuristics: e
mpty ernel Package ackages
» Code (+related) is semi-permanent
* Collections go with their inner array 2
c 50%
(V)
. g =
* Association values are not (!!)

0%
Empty Kernel Package All Packages

B Permanent Space [Old Space

Automatic Object Selection via Simulations

Simulating Selections

 Estimate

* permanent segment size

e remembered set size

* Understand the leaking reasons

* And extract better heuristics for production code
(e.q., better move all classes with all method dictionaries...)

Future Perspectives

* Sharing permanent immutable objects, copy on write
* Scaling multi-process applications

* Application-specific permanent object selection

JIT Thread _ _
Machine Code New Objects | Old Objects

JIT Thread _ _ 9 .
Machine Code New Objects | Old Objects (Perm Obje?ts

JIT Thread _ _
Machine Code New Objects | Old Objects

AN\

We are hiring!

 We have
* Engineer Positions

* Phd Positions

« Keywords: Compilers, Interpreters, Memory Management, Security

e Come talk to us!

42

- @
Conclusion j-‘ RIStAL @

L Université¢ /|
(C delile Crzzia—

* Multi-file snapshot format

Simulating Selections

 Permanent Objects and Selection

¢ 2x GC improvements

JIT Thread _ _ _
Machine Code New Objects | Old Objects jPerm Objects

Relative Speedups / v \

T Load code
1,5x
Q . .
g g image Create Objects image
E 1,0x o
g 2 * Run your app
o 0,5x S
9 « Maybe GC!
)
o0 Empty Kernel Package All Packages ° Repeat

