Functional Smalltalk

Dave Mason
Toronto Metropolitan University

©2022 Dave Mason @

Toronto
Metropolitan
University

https://creativecommons.org/licenses/by-nc-sa/4.0/

I’'m going to start with a quote from Kent Beck

Software creates value 2 ways:

Software creates value 2 ways:
@ What it does today

Software creates value 2 ways:

@ What it does today
@ What new things we can make it do tomorrow

Smalltalk creates value 2 ways:

@ What it does today
@ What new things we can make it do tomorrow

Smalltalk already has many functional features
@ extensions by syntax

Smalltalk already has many functional features
@ extensions by syntax
@ extensions by class

@ Smalltalk has always had blocks - needed full closures

@ Smalltalk has always had blocks - needed full closures
@ CompileWithCompose in Pharo-Functional repo

@ Smalltalk has always had blocks - needed full closures
@ CompileWithCompose in Pharo-Functional repo
@ leverages class-bounded alternative compiler

@ Smalltalk has always had blocks - needed full closures
@ CompileWithCompose in Pharo-Functional repo

@ leverages class-bounded alternative compiler

@ just syntactic sugar - more succinct

@ Smalltalk has always had blocks - needed full closures

@ CompileWithCompose in Pharo-Functional repo

@ leverages class-bounded alternative compiler

@ just syntactic sugar - more succinct

@ all are upward compatible as they are currently syntax errors

@ very convenient to pass result of one expression to another
without parentheses

@ very convenient to pass result of one expression to another
without parentheses

1 foo
2 " self new foo >>> 42 "
3 1 17 negated
:> min: -53
abs
< 100

and: [4 > 2]
and: [5 < 10]
ifTrue: [42] ifFalse: [99]

© © N o o &
vV V V V V V

@ very convenient to pass result of one expression to another
without parentheses

@ particularly convenient in PharoJS for e.g. D3

1 foo
2 " self new foo >>> 42 "
3 1 17 negated
:> min: -53
abs
< 100

and: [4 > 2]
and: [5 < 10]
ifTrue: [42] ifFalse: [99]

vV V. V V V V

The precedence is the same as cascade, so you can intermix them
and could say something like:

1 X := OrderedCollection new
2 add: 42;

3 add: 17;

4 yourself

5 :> collect: #negated

6 :> add: 35;

7 add: 99;

8 yourself

9 :> with: #(1 2 3 4) collect: [:1 :r| l+r]
10 :> max

... GCompose/pipe/parrot operator

If you don’t want to use the alternate compiler (and get the : > syntax)
PharoFunctional also provides a chain method on Object that
supports chaining using cascades (unfortunately quite a bit slower
because it requires a DNU and perform for each chained message):

1 foo

2 self new foo >>> 42
3 1 17 chain

4 negated

5 ; min: -53

6 ; abs

7 ; < 100

8 ; and: [4 > 2]

9

; and: [5 < 10]
; 1fTrue: [42] ifFalse: [99]

o
~

@ popular style of functional programming

@ popular style of functional programming

@ composing functions to build up operations with implicit
parameters

@ popular style of functional programming
@ composing functions to build up operations with implicit
parameters

@ various “combinators” that recognize patterns in these
compositions

@ popular style of functional programming

@ composing functions to build up operations with implicit
parameters

@ various “combinators” that recognize patterns in these
compositions

@ in Smalltalk this is composing symbols and blocks

Point-free programming style

@ popular style of functional programming

@ composing functions to build up operations with implicit
parameters

@ various “combinators” that recognize patterns in these
compositions

@ in Smalltalk this is composing symbols and blocks
@ eg.

1 isPalindrome := freverse <|> #= .
2 isPalindrome value: ’'madam’

To use point-free style, it is very convenient to have a more succinct
syntax for applying them

o)

)ty

Dy
#sort <> #=)

X X X

(.
(.
(.
(

T > B S R

Converts to.

[.] value: x)

[...] value: x) + vy
[...] value: x value: y)
(

1
2
3
4 #sort <|> #=) value: x)

You can do the same with unary or binary blocks. Because we know
the arity of blocks the trailing : isn’t used for block operators

1 x [w]...]

2 x [:w:z|...] y
becomes

1 ([:w]...] value: x)

2 ([:w:z]|...] value: x value: y)

Even in functional languages where mutation is possible, it is rarely
used. Instead programming is by a sequence of definitions, which
always have a value. | personally very much miss this in Smalltalk.

1| wx :=42. y = x+5. z a |
is legal, but
1] x :=42. y = x+5. z = 17 |

isn’t.

Collection literals

Arrays have a literal syntax {1 . 2 . 3}, but other collections don’t.
This extension recognizes : className immediately after the { and
translates, e.g.

1+ {:Set 3 . 4 . 5 . 3}
2 {:Dictionary #a->1 . #b->2}
3 {:Set 1 . 2 .3 .4 .5 .6 .7}

to

1 Set with: 3 with: 4 with: 5 with: 3
2 Dictionary with: #a->1 with: #b-—>2
3 Set withAll: {1 . 2 . 3 . 4 .5 . 6 . 7}

Destructuring collections

There isn’t a convenient way to return multiple values from a method,
or even to extract multiple values from a collection. For example:

1 :] abc | := some-collection

destructures the 3 elements of a SequenceableCollection or would
extract the value of keys #a #b etc. if it was a Dictionary, with anything
else being a runtime error. This is conveniently done by converting that
to:

1 ([:temp|

2 a := temp firstNamed: #a.

3 b := temp secondNamed: #b.

4 c := temp thirdNamed: #c.

5 temp] value: some-collection)

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@
@ value:, value:value: and cull, etc. for Symbol

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@
@ value:, value:value: and cull, etc. for Symbol
@ map:, map:map: for BlockClosure and Symbol

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@

@ value:, value:value: and cull, etc. for Symbol

@ map:, map:map: for BlockClosure and Symbol

@ <x> and other combinators for BlockClosure and Symbol

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@

@ value:, value:value: and cull, etc. for Symbol

@ map:, map:map: for BlockClosure and Symbol

@ <x> and other combinators for BlockClosure and Symbol
@ nilOr:, emptyOrNilOr:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@

@ value:, value:value: and cull, etc. for Symbol

@ map:, map:map: for BlockClosure and Symbol

@ <x> and other combinators for BlockClosure and Symbol
@ nilOr:, emptyOrNilOr:

@ Slice, Pair and Tuple, ZippedCollection

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol

<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:

Slice, Pair and Tuple, ZippedCollection

zip:, >===<

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol

<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:

Slice, Pair and Tuple, ZippedCollection

zip:, >===<

iota

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

@ curry: and @@

@ value:, value:value: and cull, etc. for Symbol

@ map:, map:map: for BlockClosure and Symbol

@ <x> and other combinators for BlockClosure and Symbol

@ nilOr:, emptyOrNilOr:

@ Slice, Pair and Tuple, ZippedCollection

@ zip:, >===<

@ iota

@ many algorithms on collections: rotate:, slide:, product,

allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Demo

Using CompileWithCompose

1 Metacello new

2 baseline: ’'PharoFunctional’;
3 repository: ’‘github://dvmason/Pharo-Functional :m
4 load: fcompiler

Then for any class heirarchy, add a trait:

1 RBScannerTest subclass: #ComposeExampleTest

2 uses: ComposeSyntax

3 instanceVariableNames: '’

4 classVariableNames: '’

5 package: 'CompileWithCompose-Tests’

Or, on the class-side define the following method:

1 compilerClass

2 " Answer a compiler class appropriate for source
3 1 ComposeCompiler

You can use this second approach if you want to add it to the entire
image (including in playgrounds), by defining this in Object class.

@ Smalltalk already has the fundamentals for functional
programming

@ Smalltalk already has the fundamentals for functional
programming
@ some simple syntactic suger can make it a lot more pleasant

@ Smalltalk already has the fundamentals for functional
programming
@ some simple syntactic suger can make it a lot more pleasant

@ | would love it if some of these became mainstream (with no
backward compatibility issues)

Conclusions

@ Smalltalk already has the fundamentals for functional
programming
@ some simple syntactic suger can make it a lot more pleasant

@ | would love it if some of these became mainstream (with no
backward compatibility issues)

@ in the meantime, anyone can add this to their Pharo

Conclusions

@ Smalltalk already has the fundamentals for functional
programming
@ some simple syntactic suger can make it a lot more pleasant

@ | would love it if some of these became mainstream (with no
backward compatibility issues)

@ in the meantime, anyone can add this to their Pharo
@ the compiler tweaks are not hard for other Smalltalks to implement

Questions?

@DrDaveMason dmason@ryerson.ca

https://github.com/dvmason/Pharo-Functional

