
Functional Smalltalk

Dave Mason
Toronto Metropolitan University

©2022 Dave Mason

https://creativecommons.org/licenses/by-nc-sa/4.0/

Value

I’m going to start with a quote from Kent Beck

Value

Software creates value 2 ways:
What it does today
What new things we can make it do tomorrow

Value

Software creates value 2 ways:
What it does today
What new things we can make it do tomorrow

Value

Software creates value 2 ways:
What it does today
What new things we can make it do tomorrow

Value

Smalltalk creates value 2 ways:
What it does today
What new things we can make it do tomorrow

Functional Smalltalk

Smalltalk already has many functional features
extensions by syntax
extensions by class

Functional Smalltalk

Smalltalk already has many functional features
extensions by syntax
extensions by class

Syntax: Functional Programming

Smalltalk has always had blocks - needed full closures
CompileWithCompose in Pharo-Functional repo
leverages class-bounded alternative compiler
just syntactic sugar - more succinct
all are upward compatible as they are currently syntax errors

Syntax: Functional Programming

Smalltalk has always had blocks - needed full closures
CompileWithCompose in Pharo-Functional repo
leverages class-bounded alternative compiler
just syntactic sugar - more succinct
all are upward compatible as they are currently syntax errors

Syntax: Functional Programming

Smalltalk has always had blocks - needed full closures
CompileWithCompose in Pharo-Functional repo
leverages class-bounded alternative compiler
just syntactic sugar - more succinct
all are upward compatible as they are currently syntax errors

Syntax: Functional Programming

Smalltalk has always had blocks - needed full closures
CompileWithCompose in Pharo-Functional repo
leverages class-bounded alternative compiler
just syntactic sugar - more succinct
all are upward compatible as they are currently syntax errors

Syntax: Functional Programming

Smalltalk has always had blocks - needed full closures
CompileWithCompose in Pharo-Functional repo
leverages class-bounded alternative compiler
just syntactic sugar - more succinct
all are upward compatible as they are currently syntax errors

Compose/pipe/parrot operator

very convenient to pass result of one expression to another
without parentheses
particularly convenient in PharoJS for e.g. D3

Compose/pipe/parrot operator

very convenient to pass result of one expression to another
without parentheses
particularly convenient in PharoJS for e.g. D3

1 foo
2 " s e l f new f o o >>> 42 "
3 ↑ 17 negated
4 :> min: -53
5 :> abs
6 :> < 100
7 :> and: [4 > 2]
8 :> and: [5 < 10]
9 :> ifTrue: [42] ifFalse: [99]

Compose/pipe/parrot operator

very convenient to pass result of one expression to another
without parentheses
particularly convenient in PharoJS for e.g. D3

1 foo
2 " s e l f new f o o >>> 42 "
3 ↑ 17 negated
4 :> min: -53
5 :> abs
6 :> < 100
7 :> and: [4 > 2]
8 :> and: [5 < 10]
9 :> ifTrue: [42] ifFalse: [99]

... Compose/pipe/parrot operator

The precedence is the same as cascade, so you can intermix them
and could say something like:

1 x := OrderedCollection new
2 add: 42;
3 add: 17;
4 yourself
5 :> collect: #negated
6 :> add: 35;
7 add: 99;
8 yourself
9 :> with: #(1 2 3 4) collect: [:l :r | l+r]

10 :> max

... Compose/pipe/parrot operator

If you don’t want to use the alternate compiler (and get the :> syntax)
PharoFunctional also provides a chain method on Object that
supports chaining using cascades (unfortunately quite a bit slower
because it requires a DNU and perform for each chained message):

1 foo
2 " s e l f new f o o >>> 42 "
3 ↑ 17 chain
4 negated
5 ; min: -53
6 ; abs
7 ; < 100
8 ; and: [4 > 2]
9 ; and: [5 < 10]

10 ; ifTrue: [42] ifFalse: [99]

Point-free programming style

popular style of functional programming
composing functions to build up operations with implicit
parameters
various “combinators” that recognize patterns in these
compositions
in Smalltalk this is composing symbols and blocks
e.g.

1 isPalindrome := #reverse < | > #= .
2 isPalindrome value: ’madam’

Point-free programming style

popular style of functional programming
composing functions to build up operations with implicit
parameters
various “combinators” that recognize patterns in these
compositions
in Smalltalk this is composing symbols and blocks
e.g.

1 isPalindrome := #reverse < | > #= .
2 isPalindrome value: ’madam’

Point-free programming style

popular style of functional programming
composing functions to build up operations with implicit
parameters
various “combinators” that recognize patterns in these
compositions
in Smalltalk this is composing symbols and blocks
e.g.

1 isPalindrome := #reverse < | > #= .
2 isPalindrome value: ’madam’

Point-free programming style

popular style of functional programming
composing functions to build up operations with implicit
parameters
various “combinators” that recognize patterns in these
compositions
in Smalltalk this is composing symbols and blocks
e.g.

1 isPalindrome := #reverse < | > #= .
2 isPalindrome value: ’madam’

Point-free programming style

popular style of functional programming
composing functions to build up operations with implicit
parameters
various “combinators” that recognize patterns in these
compositions
in Smalltalk this is composing symbols and blocks
e.g.

1 isPalindrome := #reverse < | > #= .
2 isPalindrome value: ’madam’

Expressions as unary or binary messages

To use point-free style, it is very convenient to have a more succinct
syntax for applying them

1 x (...)
2 x (...) + y
3 x (...): y
4 x (#sort < | > #=)

Converts to.

1 ([...] value: x)
2 ([...] value: x) + y
3 ([...] value: x value: y)
4 ((#sort < | > #=) value: x)

Blocks as unary or binary messages

You can do the same with unary or binary blocks. Because we know
the arity of blocks the trailing : isn’t used for block operators

1 x [:w | ...]
2 x [:w:z | ...] y

becomes

1 ([:w | ...] value: x)
2 ([:w:z | ...] value: x value: y)

Initializing local variables at point of declaration

Even in functional languages where mutation is possible, it is rarely
used. Instead programming is by a sequence of definitions, which
always have a value. I personally very much miss this in Smalltalk.

1 | w x := 42. y = x+5. z a |

is legal, but

1 | x := 42. y = x+5. z = 17 |

isn’t.

Collection literals

Arrays have a literal syntax {1 . 2 . 3}, but other collections don’t.
This extension recognizes :className immediately after the { and
translates, e.g.

1 {:Set 3 . 4 . 5 . 3}
2 {:Dictionary #a->1 . #b->2}
3 {:Set 1 . 2 . 3 . 4 . 5 . 6 . 7}

to

1 Set with: 3 with: 4 with: 5 with: 3
2 Dictionary with: #a->1 with: #b->2
3 Set withAll: {1 . 2 . 3 . 4 . 5 . 6 . 7}

Destructuring collections

There isn’t a convenient way to return multiple values from a method,
or even to extract multiple values from a collection. For example:

1 : | a b c | := some-collection

destructures the 3 elements of a SequenceableCollection or would
extract the value of keys #a #b etc. if it was a Dictionary, with anything
else being a runtime error. This is conveniently done by converting that
to:

1 ([:temp |
2 a := temp firstNamed: #a.
3 b := temp secondNamed: #b.
4 c := temp thirdNamed: #c.
5 temp] value: some-collection)

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Classes: Functional Programming

PharoFunctional adds several new classes and a variety of extension
methods to facilitate functional programming.

curry: and @@

value:, value:value: and cull, etc. for Symbol
map:, map:map: for BlockClosure and Symbol
<*> and other combinators for BlockClosure and Symbol
nilOr:, emptyOrNilOr:
Slice, Pair and Tuple, ZippedCollection
zip:, >===<
iota

many algorithms on collections: rotate:, slide:, product,
allEqual, unique, isUnique, groupByRunsEqual:,
groupByRunsTrue:

Demo

Using CompileWithCompose

1 Metacello new
2 baseline: ’PharoFunctional’;
3 repository: ’github://dvmason/Pharo-Functional:master’;
4 load: #compiler

Then for any class heirarchy, add a trait:

1 RBScannerTest subclass: #ComposeExampleTest
2 uses: ComposeSyntax
3 instanceVariableNames: ’’
4 classVariableNames: ’’
5 package: ’CompileWithCompose-Tests’

Or, on the class-side define the following method:

1 compilerClass
2 " Answer a c o m p i l e r c l a s s a p p r o p r i a t e f o r s o u r c e methods o f t h i s c l a s s and s u b c l a s s e s . "
3 ↑ ComposeCompiler

You can use this second approach if you want to add it to the entire
image (including in playgrounds), by defining this in Object class.

Conclusions

Smalltalk already has the fundamentals for functional
programming
some simple syntactic suger can make it a lot more pleasant
I would love it if some of these became mainstream (with no
backward compatibility issues)
in the meantime, anyone can add this to their Pharo
the compiler tweaks are not hard for other Smalltalks to implement

Conclusions

Smalltalk already has the fundamentals for functional
programming
some simple syntactic suger can make it a lot more pleasant
I would love it if some of these became mainstream (with no
backward compatibility issues)
in the meantime, anyone can add this to their Pharo
the compiler tweaks are not hard for other Smalltalks to implement

Conclusions

Smalltalk already has the fundamentals for functional
programming
some simple syntactic suger can make it a lot more pleasant
I would love it if some of these became mainstream (with no
backward compatibility issues)
in the meantime, anyone can add this to their Pharo
the compiler tweaks are not hard for other Smalltalks to implement

Conclusions

Smalltalk already has the fundamentals for functional
programming
some simple syntactic suger can make it a lot more pleasant
I would love it if some of these became mainstream (with no
backward compatibility issues)
in the meantime, anyone can add this to their Pharo
the compiler tweaks are not hard for other Smalltalks to implement

Conclusions

Smalltalk already has the fundamentals for functional
programming
some simple syntactic suger can make it a lot more pleasant
I would love it if some of these became mainstream (with no
backward compatibility issues)
in the meantime, anyone can add this to their Pharo
the compiler tweaks are not hard for other Smalltalks to implement

Questions?

@DrDaveMason dmason@ryerson.ca

https://github.com/dvmason/Pharo-Functional

