James Foster

ESUG 2022

A VS Code
Extension for

GemStone/S

My Recent Environment

= Teaching Computer Science at Walla Walla University
= From Intro to Programming to Artificial Intelligence
= |Include Smalltalk in Advanced Object-Oriented Programming

= Give students industry experience

ABSTRACT

This project seeks to make GemStone, an object
database system sold by GemTalk Systems, more
accessible by supporting Python through an external
package. Grail takes Python source code as input and
outputs GemStone Smalltalk source code.

Python was chosen because of its popularity among
data science fields. GemStone makes storing large
amounts of data very convenient and efficient without the
need to write overhead database connection code.

INTRODUCTION

GemStone is a database system unlike traditional
databases. It doesn'’t store rows in tables or documents in
collections, but instead it stores Smalltalk objects, making
it very convenient to use since there isn’t a conversion
layer for changing objects into a persistable format.

However, GemStone’s reliance on Smalltalk is
troublesome for most developers and companies.
Smalltalk is a language born in the 80’s that laid the
groundwork for modern Object-Oriented languages, but
the language itself never became very popular. Finding a
modern Smalltalk programmer is becoming even more
difficult with time.

Python boasts a large community of a wide range of
programmers from data scientists to researchers in
artificial intelligence. Because of these data oriented fields’
reliance on Python, it was chosen to be the source
language for Grail.

Python to Sma

Grail

A Python to Smalltalk Translator
Will Hensel

TRANSLATOR
Grail’s translation procedure is a three step process

e An string-represented Abstract Syntax Tree (AST) is
generated using the Python AST package.
The string is taken and parsed into a new AST
composed of Smalltalk objects.
A second pass down the tree is made to translate
each node to Smalltalk source code.

| currentscope |

currentScope := Variables new.

currentscope at: #print
scope: currentscope

positional: { (str __ value: 'Hello world!®

named: Dictionary new

*Hello world!” script generated by Grail

EXECUTION

The string output from the translation module is then
executed, but the execution logic does not depend on the
translator. The logic is instead defined in a Smalltalk
dictionary called builtins which models the Python package
of the same name.

The builtins package defines all the built-in behavior of
Python. In order to accurately model Python, we have to
model that exact same behavior in Smalltalk. We achieve

s by defining every one of Python’s built-in classes and
methods in Smalltalk. This is tedious work and builtins is still
in a partially complete state so the complexity of programs
we can execute under Grail is limited.

CHALLENGES

The first challenge | faced was having to port the
builtins dictionary from the Pharo Smalltalk dialect into the
GemStone Smalltalk dialect. There are some differences
between the two such as different suites of methods
defined on various classes.

Another big challenge was due to some complex
portions of Python’s behavior, particularly when it came to
scoping variables and function definitions. Python has
hierarchical scoping with a root scope where builtins is
defined, a module level scope called “global”, and child
scopes for the various structures defined in the module
such as nested function definitions.

SUMMARY

While Grail as a whole is still limited in functionality,
my part of the project was very successful. My original
overarching goal was to translate some fairly sophisticated
Python code into Smallltalk and | achieved that goal. What
we have built is a great proof of the power that can be
harnessed when combining a data-oriented language like
Python with GemStone.

REFERENCES

https://gemtalksystems.com/
https://pharo.org/
https://www.python.org/
https://docs.python.org/3/library/ast.html

19 May 2022, WWU Computer Science Departm:

litalk

Dart to Smalltalk

= https://www.youtube.com/watch?v=8rH9yMFKoPM

Climate Research

Tank Controller

Disclaimer

= This is a personal project

= |tis not a GemTalk Systems project or product

= An object database

= Smalltalk

About GemStone/S

IDE Options for GemStone

Topaz (command-line)

GemBuilder for Smalltalk (e.g., VA Smalltalk)
Jade[ite] (Microsoft Windows)

Sparkle (Pharo)

Visual Studio Code?

GemStone Architecture

Application GemStone Object Server
Clients @)
. Session Stone Server

Objects are on disk in the Processes Repository Processes
. g g Monit
Repository and in primary Nodet sl
; Shared Page
memory in the Shared Page ‘Application Shares
are

Cache (SPC) e

Cache
(SPC)

q Shared
= A Gem provides a database Memory

Segment (Reclaim Gem
session, manipulates objects,
and executes Smalltalk code

= Aclient application interacts
with a Gem Disk

Persistence

Application Architecture

= Smalltalk code runs in
a Gem

>

= A Gem (server)
requires a GCI (client)
application

= Topaz

Page Cache

onitor TCP socket
Disk 110

. Web server

= Any FFl-enabled app

. E.g., Pharo or
VA Smalltalk

= Another Gem!

Traditional GCI| Connection

1. Ask NetLDI for a Gem 'Remote Node Server Node
2. NetLDI starts a Gem and Ownership
: determined
passes it the socket by NetLDI

configuration

3. Gem connects to Stone
4. (see #2)

5. Gem opens the repository
and connects to the SPC

The GemStone C Interface Library

= Shared library: libgcirpc-3.6.3-64.[dll | dylib | so]

Web Server Model

Login Topaz

Listen on well-known port
Receive HTTP request
Send HTTP response

Often have a traditional web server (Apache, Nginx) in between
to handle HTTPS, serve static content, and reverse proxy
dynamic requests to the Topaz Gem

About Visual Studio Code

The most popular developer environment tool

= 70% of 82,000 in Stack Overflow 2021 Developer Survey

= Available from Microsoft on GitHub under the MIT license
Syntax highlighting, bracket matching, code folding, Git, etc.
Electron (web technology) runs on Chromium and Node.js

Extended with (TypeScript) Extensions

= Add support for languages, themes, debuggers, static code
analyzers, and code linters

https://en.wikipedia.org/wiki/Stack_Overflow

(Some) IDE Requirements

Start a Gem (requires a user ID and password)

Browse and edit code
Evaluate expressions (identify an object and send a message)
Object inspector

Debugger

Connecting VS Code to GemStone

= Traditional approach: a GCI shared library
= One library for each GemStone version and platform

= Create a JavaScript wrapper (FFI) to the C library

= Simple Web approach: stateless HTTP request/response

= Keep state on server

= WebSocket approach
= WebGS supports WebSockets and a GCl-style API

= package.json

= extension.ts

Demo and Exploring Code

Code, Contact, and Questions

Code

= https://github.com/jgfoster/vscode-gemstone

= https://github.com/jgfoster/\WWebGS

Contact

= James.Foster@GemTalkSystems.com

= James.Foster@WallaWalla.edu

= https://programminggems.wordpress.com/

Credits

= https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/http basics.html

= https://www.researchgate.net/figure/\WWeb-socket-architecture fig3 338553959

https://github.com/jgfoster/vscode-gemstone
https://github.com/jgfoster/WebGS
mailto:James.Foster@GemTalkSystems.com
mailto:James.Foster@WallaWalla.edu
https://programminggems.wordpress.com/
https://www3.ntu.edu.sg/home/ehchua/programming/webprogramming/http_basics.html
https://www.researchgate.net/figure/Web-socket-architecture_fig3_338553959

