
First Class Variables

as

AST Annotations
Marcus Denker

Inria RMoD

Part I: The AST

• AST = Abstract Syntax Tree

• Tree Representation of the Method

• Based on the RB AST

• Used by all tools (refactoring, syntax-highlighting,…)

Smalltalk compiler parse: 'test ^(1+2)'

AST

• RBMethodNode Root

• RBVariableNode Variable (read and write)

• RBAssignmentNode Assignment

• RBMessageNode A Message (most of them)

• RBReturnNode Return

Inspect a simple AST

• A very simple Example

Smalltalk compiler parse: 'test ^(1+2)'

User: Tools

• Refactoring

• Breakpoints / Watchers

• Syntax Highlight / Code Completion

• AST based Menu in the Code Browser

User: The Compiler

Source AST Annotated
AST

IRAnnotated
AST Bytecode

RBParser OCSemanticAnalyzer

OCASTTranslator/
IRBuilder

IRBytecodeGenerator

Variables in the AST

• Example: (Point>>#x)

•

Problem: Kind of Variable?

• Example: SHRBTextStyler

• Syntax highlighting needs to know which kind

Variables in the AST
• Every definition, read and write gets one new instance

of RBVariableNode (as we have to encode the parent
for each differently)

• We just know the name

• SYNTAX, but no SEMANTICs

• Kind? (temp or ivar)

• Variables with same name can be different
variables

To the Rescue: Name
Analysis

• We have to annotate the AST with information about
Variables

• Block/Method: defined Variables are put in a Scope

• Scopes know the parent Scope

• When we see a use, we loop up the variable in the Scope

Semantic Variables

• Every RBVariableNode gets a semantic variable
annotation

• Both the definition and all uses

• There is one instance for each variable that models

• name

• scope it was defined

Variables in the AST

• Example Again: (Point>>#x)

•

Variables and Compilation

• Compiler just delegates to the Variable, e.g for instance
Variables:

• emitStore/emitValue: defined for each kind of Variables
(global/temp/ivar)

emitStore: methodBuilder
"generate store bytecode"
methodBuilder storeInstVar: index

Repeat:The AST

• AST = Abstract Syntax Tree

• Tree Representation of the Method

• Produced by the Parser (part of the Compiler)

• Used by all tools and the Compiler

• We need to model Variables semantically to make it useful

Now Step Back

Forget Part I

(for now)

Look at it from Reflective
Point of View

PartII

First Class Variables

First: Variables in ST80

Instance Variables

• Defined by the Class (list of variable names)

• Can be read via the object:

• instVarNamed:(put:), #instVarAt:(put:)

• Instance Variables have an offset in the Object

• Defined by the order of the defined vars in the Hierarchy

1@2 instVarNamed: 'x'

Temporary Variable
• Defined by a method or Block

• Arguments are temps, too

• Can be read via the context

• #tempNamed:, tempNamed:put:

• With Closures this is more complex than you ever want to
know!

[| temp | temp := 1. thisContext tempNamed: 'temp'] value

Globals

• Entries in the “Smalltalk globals” Dictionary

• Contain the value

• Can be read via the global Dictionary

• Access via #value / value: on the Association

• Class Vars and Pool Vars are just Associations from other
Dictionaries

Smalltalk globals at: #Object.
Object binding value.

“Everything is an Object”

For Variables… not really

Globals/Class Vars

• Here we have at least the Association (#binding):

• But there is no “GlobalVariable” class

• No API other than #value:/#value

• Classes define just names of variables

Object binding

Instance Variables

• The class just knows the names

• There is no Object representing instance variables

• Classes define just names of variables

• Bytecode accesses by offset

Point allInstVarNames

Temporary Variables

• The methods know nothing. Even to know the variable
name we need the compiler (and the source)

• There is no object representing temp Variables

• Reflective read and write is *hard* -> compiler needs to
create extensive meta-data

Why Not Do Better?

• Every defined Variable is described a meta object

• Class Hierarchy: Variable

The Hierarchy
• Variable

• LiteralVariable

• ClassVariable

• GlobalVariable

• UndeclaredVariable

• WorkspaceVariable

• LocalVariable

• ArgumentVariable

• TemporaryVariable

• ReservedVariable

• SelfVariable

• SuperVariable

• ThisContextVariable

• Slot

Example: vars of a class

• Get all Variables of a class

• Inspect it

• #usingMethods

Point instanceVariables

Instance Variable

• Read x in a Point

• Write

• read/write without sending a message to the object!

(Point instanceVariables first) read: (5@4)

point := 5@4.
(Point instanceVariables first) write: 100 to: point.

Globals

• Object binding class

• Object binding read

• We keep the Association API so the Global Variables can
play the role of associations in the global dictionary.

Object binding usingMethods

Temporary Variables

• There are too many to allocate them all

• They are created on demand (with the AST)

((LinkedList>>#do:) temporaryVariableNamed: 'aLink')

#lookupVar:

• Every variable knows the scope is was defined in

• Every scope know the outer scope

• #lookupVar: looks up names along the scope
[| temp |thisContext lookupVar: 'temp'] value.

[| temp |thisContext lookupVar: ‘Object'] value

(Point slotNamed: #x) scope outerScope

Debugger: Read Vars

• In the Debugger we to be able to read Variables from a
DoIt.

• lookupVar, then readInContext works for all Variables!

• If you know the context, you can read any variable

• DoItVariable: Nice names in DoIts (—> Show Us)

[| temp | temp :=1 . (thisContext lookupVar: 'temp')
readInContext: thisContext] value

Part III: Putting it Together

• We have seen how Semantic Variables are needed to
make the AST useful

• We have seen First Class Variables as part of the
Reflective Model

• Do we really need the two?

Solution: Scope

• What is needed? Add the concept of Scope

• Scope of a global is Smalltalk globals

• Scope of an instance variable is the class

• Scope of temp: method and block scope

Example: Point x

(Point slotNamed: #x) scope == Point

(Point lookupVar: #x) == (Point slotNamed: #x)

(Point>>#x) ast variableNodes first variable == (Point slotNamed: #x)

What do we get?

• Simplified Name Analysis in the Compiler

• Open Compiler: Define your own kinds of Variables

• While fully integrated in the Reflective Model

• Reflective Reading/Writing

• All tools work for you own kinds of Variables

What we did not see…

• Define your own kinds of Variables (e.g. subclasses of
Slot / ClassVariable)

• Fluid Class Definitions: How to create classes that use
these variables

• How this enables DoIts with nice variable names

• Reflection: MetaLinks on Variables

Thanks…

• This is the work on *many* contributors from the Pharo
Community

• Thanks for lots of interesting discussions, ideas, and
code!

Questions?

• We have seen how the AST needs semantic variables to
be useful

• We have seen First Class Variables as part of the
Reflective model

• First Class Variables, with just adding the concept of a
Scope, can serve as semantic annotations on the AST

