First Class Variables
as
AST Annotations

Marcus Denker

Inria RMoD

Part I: The AST

AST = Abstract Syntax Tree
Tree Representation of the Method
Based on the RB AST

Used by all tools (refactoring, syntax-highlighting,...)

Smalltalk compiler parse: 'test 7 (1+2)°

RBMethodNode
RBVariableNode
RBAssignmentNode

RBMessageNode

RBReturnNode

AST

Root

Variable (read and write)
Assignment

A Message (most of them)

Return

Inspect a simple AST

A very simple Example

Smalltalk compiler parse: 'test “(1+2)°

x - 0O Inspector on a RBMethodNode (test * 1 +2) (h 2?2~
a RBMethodNode (test 1 +2) 2 aRBLiteralvalueNode (RBLiteralvalueNode(2)) x =P
Raw Source:.. Scopes Tree Meta Raw Sourcec... Scopes Tree Meta I_)

¥ RBMethodNode(test *1+2) test A(1+2)

¥ RBSequenceNode(" 1 +2)
¥ RBReturnNode(” 1 + 2)
¥ RBMessageNode(1 +2)
RBLiteralvalueNode(1)
RBLiteralValueNode(2)

User: Tools

Refactoring
Breakpoints / Watchers
Syntax Highlight / Code Completion

AST based Menu in the Code Browser

User: The Compiler

Annotated
Source * AST * AST

RBParser OCSemanticAnalyzer

* IR * Bytecode

OCASTTranslator/
ITRBuilder

Annotated
AST

IRBytecodeGenerator

Variables in the AST

e Example: (Point>>#x)

rx -0 Inspector on Point>>#x
a CompiledMethod (Point=>#x) Y O & @ a RBVariableMode (RBVariabl v O &
AST Header Raw Breakpoints Meta Sourcecode Tree ASTDump Raw
¥ RBMethodNode(x "Answer the x coordinate.” "(100@209 X

¥ RBSequenceNode(* x)
¥ RBReturnMode(" x)
RBVariableNode(x)

2 "Answer the x coordinate."

"(100@208) x >>> lag"

Lad

Problem: Kind of Variable?

e Example: SHRBTextStyler

 Syntax highlighting needs to know which kind

¥ resolveStyleFor x

resolveStyleFor: avariableNode
aVariableNode binding ifNil: [*#default].
aVariableNode isArgumentVariable ifTrue: [*#methodArg].
aVariableNode isTempVariable ifTrue: [“*#tempVar].
aVariableNode isGlobalVariable ifTrue: [*#globalvar].
"here we should add support for #classVar™

aVariableNode isClassVariable ifTrue: [*#globalVvar].

aVariableNode isInstanceVariable ifTrue: [AginstVar].

Variables in the AST

* Every definition, read and write gets one new instance
of RBVariableNode (as we have to encode the parent
for each differently)

 We just know the name
e SYNTAX, but no SEMANTICs
e Kind? (temp or ivar)

e \/ariables with same name can be different
variables

To the Rescue: Name
Analysis

e \We have to annotate the AST with information about
Variables

e Block/Method: defined Variables are put in a Scope
e Scopes know the parent Scope

e When we see a use, we loop up the variable in the Scope

Semantic Variables

 Every RBVariableNode gets a semantic variable
annotation

e Both the definition and all uses
e There is one instance for each variable that models
* name

e scope it was defined

Variables in the AST

e Example Again: (Point>>#x)

mpnaf i\

Dlavornnnd

Inspector on Point=>#x

o x =0
> [EF
Dait Publish Bindi i ‘ i)
ublis indinj 3 RBVariableNode (RBVariabl... Y O & B x
1| (Point>>#x) y
5 Sourcecode Tree AST Dump Raw >
=Variable = Value
c) self RBVariableNode(x)
» (C) parent RBReturnMNode(” x)
» (L) properties nil
» (C) parentheses nil
® » 1 name X
» . variable #x == InstanceVariableSlot
» I start 58

an InstanceVariableSlot (#x...

VY O & &

Raw UsingMethods Breakpoints Meta
+Variable +Value

£ self #x == InstanceVariable!
» 1 name X
» () owningClass Point
» (£ definingClass nil
» I index 1

Variables and Compilation

e Compiler just delegates to the Variable, e.g for instance
Variables:

emitStore: methodBuilder
"generate store bytecode"
methodBuilder storelnstVar: index

e emitStore/emitValue: defined for each kind of Variables
(global/temp/ivar)

Repeat:The AST

AST = Abstract Syntax Tree

Tree Representation of the Method

Produced by the Parser (part of the Compiler)
Used by all tools and the Compiler

We need to model Variables semantically to make it useful

Now Step Back

Forget Part |
(for now)

Look at it from Reflective
Point of View

Partll
First Class Variables

First: Variables in ST80

Instance Variables

Defined by the Class (list of variable names)

Can be read via the object:

instVarNamed: (put:), #instVarAt: (put:)
Instance Variables have an offset in the Object

Defined by the order of the defined vars in the Hierarchy

1@2 instVarNamed: 'x'

Temporary Variable

 Defined by a method or Block
* Arguments are temps, too

e (Can be read via the context

® #tempNamed:, tempNamed:put:

[| temp | temp := 1. thisContext tempNamed: 'temp'] value

e With Closures this is more complex than you ever want to
know!

Globals

Entries in the “Smalltalk globals” Dictionary

Contain the value Smalltalk globals at: #Object.
Object binding value.

Can be read via the global Dictionary

Access via #value / value: on the Association

Class Vars and Pool Vars are just Associations from other
Dictionaries

“Everything is an Object”

For Variables... not really

Globals/Class Vars

* Here we have at least the Association (#binding):
Object binding
e But there is no “GlobalVariable” class
* No API other than #value:/#value

e (Classes define just names of variables

Instance Variables

The class just knows the names

Point allinstVarNames
There is no Object representing instance variables
Classes define just names of variables

Bytecode accesses by offset

Temporary Variables

* The methods know nothing. Even to know the variable
name we need the compiler (and the source)

* There is no object representing temp Variables

e Reflective read and write is *hard* -> compiler needs to
create extensive meta-data

Why Not Do Better?

 Every defined Variable is described a meta object

e (Class Hierarchy: Variable

The Hierarchy

_ e |ocalVariable
e Variable

 ArgumentVariable

e | iteralVariable |
e TemporaryVariable

e (ClassVariable e ReservedVariable

e GlobalVariable * SeliVariable

. * SuperVariable
e UndeclaredVariable

e ThisContextVariable

» WorkspaceVariable
e Slot

Example: vars of a class

(et all Variables of a class Point instanceVariables
* |nspect it

e #usingMethods

Instance Variable

e Read x in a Point

(Point instanceVariables first) read: (5@4)

e Write

point := 5@4.
(Point instanceVariables first) write: 100 to: point.

e read/write without sending a message to the object!

Globals

 Object binding class

e QObject binding read

e We keep the Association API so the Global Variables can
play the role of associations in the global dictionary.

Object binding usingMethods

Temporary Variables

* There are too many to allocate them all

 They are created on demand (with the AST)

((LinkedList>>#do:) temporaryVariableNamed: 'aLink')

#lookupVar:

e Every variable knows the scope is was defined in
 Every scope know the outer scope

(Point slotNamed: #x) scope outerScope

* #lookupVar: looks up names along the scope

[| temp [thisContext lookupVar: 'temp'] value.

[| temp [thisContext lookupVar: ‘Object'] value

Debugger: Read Vars

In the Debugger we to be able to read Variables from a
Dolt.

lookupVar, then readInContext works for all Variables!

[| temp | temp :=1 . (thisContext lookupVar: 'temp')
readinContext: thisContext] value

If you know the context, you can read any variable

DoltVariable: Nice names in Dolts (—> Show Us)

Part lll: Putting it Together

e \We have seen how Semantic Variables are needed to
make the AST useful

 \We have seen First Class Variables as part of the
Reflective Model

* Do we really need the two?

Solution: Scope

e What is needed? Add the concept of Scope
e Scope of a global is Smalltalk globals
e Scope of an instance variable is the class

e Scope of temp: method and block scope

Example: Point X

(Point slotNamed: #x) scope == Point

(Point lookupVar: #x) == (Point slotNamed: #x)

(Point>>#x) ast variableNodes first variable == (Point slotNamed: #x)

What do we get?

e Simplified Name Analysis in the Compiler
e Open Compiler: Define your own kinds of Variables
e While fully integrated in the Reflective Model

* Reflective Reading/Writing

e All tools work for you own kinds of Variables

What we did not see...

Define your own kinds of Variables (e.g. subclasses of
Slot / ClassVariable)

Fluid Class Definitions: How to create classes that use
these variables

How this enables Dolts with nice variable names

Reflection: MetalLinks on Variables

Thanks...

e This is the work on *many” contributors from the Pharo
Community

 Thanks for lots of interesting discussions, ideas, and
code!

Questions?

e \We have seen how the AST needs semantic variables to
be useful

* We have seen First Class Variables as part of the
Reflective model

e First Class Variables, with just adding the concept of a
Scope, can serve as semantic annotations on the AST

