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Tail call in Bytecode

Bytecode for Array class»new:

self
pushTemp: 0
send: basicNew:
returnTop
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Calling new with TCE - cont’d
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Sender of new:’s frame



Calling new with TCE - cont’d

basicNew:’s return
Sender of new:’s frame
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Frequency of Tail Calls

Static Frequency
Platform Packages Tail Calls Total Percentage

Squeak - All 25162 407971 6.17
Squeak - Compiler 863 8747 9.87

Higher Dynamic Frequency
Action Tail Calls Total Percentage
Startup 47669 219054 21.76

Recompile 92041349 551250016 16.70
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Remove the existing stack frame and arguments
Pushes the new arguments and calls the next method
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Activate for monomorphic send sites
Bypass for polymorphic and megamorphic send sites
Need tail call and non-tail call JIT code for each send
Copy method lookup code to sender in tail calls
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Browse Number Class Execution
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Next 2 tests not in thesis



Initially was a fair bit of slowdown for Cog



Method Analyzer Execution
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Questions?


