
Tail Call Elimination in Opensmalltalk

Matthew Ralston Dave Mason
Department of Computer Science
Ryerson University

c©2019 Matthew Ralston

https://creativecommons.org/licenses/by-nc-sa/4.0/


Agenda

What is a Tail Call?
Tail Call Elimination
Stack Interpreter Implementation
Cog VM JIT Implementation
Results
Conclusions and Future Work



What is a Tail Call?

Call followed by a return
Smalltalk Example

Array class>>new: sizeRequested
^ self basicNew: sizeRequested

Call to basicNew: is a tail call
Immediately followed by a return



What is a Tail Call?

Call followed by a return
Smalltalk Example

Array class>>new: sizeRequested
^ self basicNew: sizeRequested

Call to basicNew: is a tail call
Immediately followed by a return



What is a Tail Call?

Call followed by a return
Smalltalk Example

Array class>>new: sizeRequested
^ self basicNew: sizeRequested

Call to basicNew: is a tail call
Immediately followed by a return



What is a Tail Call?

Call followed by a return
Smalltalk Example

Array class>>new: sizeRequested
^ self basicNew: sizeRequested

Call to basicNew: is a tail call
Immediately followed by a return



Tail call in Bytecode

Bytecode for Array class»new:

self
pushTemp: 0
send: basicNew:
returnTop



Calling new without TCE

Stack after calling new:
new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new without TCE

Stack after calling new:
new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new without TCE - cont.

Stack after calling basicNew:
basicNew:’s stack frame
basicNew:’s argument
new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new without TCE - cont.

Stack after calling basicNew:
basicNew:’s stack frame
basicNew:’s argument
new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new without TCE - cont.

Stack after returning from basicNew:
basicNew:’s result
new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new without TCE - cont.

Stack after returning from basicNew:
basicNew:’s result
new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new without TCE - cont.

Stack after returning from new:
new:’s result

Sender of new:’s frame



Calling new without TCE - cont.

Stack after returning from new:
new:’s result

Sender of new:’s frame



Tail Call Elimination

Why return to new:?
Why keep new:’s stack frame?



Tail Call Elimination

Why return to new:?
Why keep new:’s stack frame?



Calling new with TCE

new:’s stack frame
new:’s argument

Sender of new:’s frame



Calling new with TCE - cont’d

basicNew:’s stack frame
basicNew:’s argument
Sender of new:’s frame



Calling new with TCE - cont’d

basicNew:’s return
Sender of new:’s frame



Tail Recursion Elimination

Special Case of Tail Call Elimination
Recursive Call is also a Tail Call



Tail Recursion Elimination

Special Case of Tail Call Elimination
Recursive Call is also a Tail Call



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Motivation

Well Known Optimization
Support in functional languages, CLR, etc.
Not supported in JVM, Python
Necessary for functional languages
Can be useful for OO as well
In common patterns like Visitor Pattern
Iteration in Smalltalk



Frequency of Tail Calls

Static Frequency
Platform Packages Tail Calls Total Percentage

Squeak - All 25162 407971 6.17
Squeak - Compiler 863 8747 9.87

Higher Dynamic Frequency
Action Tail Calls Total Percentage
Startup 47669 219054 21.76

Recompile 92041349 551250016 16.70



Frequency of Tail Calls

Static Frequency
Platform Packages Tail Calls Total Percentage

Squeak - All 25162 407971 6.17
Squeak - Compiler 863 8747 9.87

Higher Dynamic Frequency
Action Tail Calls Total Percentage
Startup 47669 219054 21.76

Recompile 92041349 551250016 16.70



Implementations

Stack Interpreter
Cog VM



Implementations

Stack Interpreter
Cog VM



Stack Interpreter

Interpreter only
Look ahead to next bytecode for return
Switch to tail call eliminating implementation
Remove the existing stack frame and arguments
Pushes the new arguments and calls the next method



Stack Interpreter

Interpreter only
Look ahead to next bytecode for return
Switch to tail call eliminating implementation
Remove the existing stack frame and arguments
Pushes the new arguments and calls the next method



Stack Interpreter

Interpreter only
Look ahead to next bytecode for return
Switch to tail call eliminating implementation
Remove the existing stack frame and arguments
Pushes the new arguments and calls the next method



Stack Interpreter

Interpreter only
Look ahead to next bytecode for return
Switch to tail call eliminating implementation
Remove the existing stack frame and arguments
Pushes the new arguments and calls the next method



Stack Interpreter

Interpreter only
Look ahead to next bytecode for return
Switch to tail call eliminating implementation
Remove the existing stack frame and arguments
Pushes the new arguments and calls the next method



Cog JIT Compiler

Not optimizing interpreted calls
JIT compile tail calls as jumps
Cost of tail call check moved to JIT compile time



Cog JIT Compiler

Not optimizing interpreted calls
JIT compile tail calls as jumps
Cost of tail call check moved to JIT compile time



Cog JIT Compiler

Not optimizing interpreted calls
JIT compile tail calls as jumps
Cost of tail call check moved to JIT compile time



Cog VM - Inline Caching

Cog VM - levels of inline caching
No Inline Cache
Monomorphic Send Sites
Polymorphic Send Sites
Megamorphic Send Sites



Cog VM - Inline Caching

Cog VM - levels of inline caching
No Inline Cache
Monomorphic Send Sites
Polymorphic Send Sites
Megamorphic Send Sites



Cog VM - Inline Caching

Cog VM - levels of inline caching
No Inline Cache
Monomorphic Send Sites
Polymorphic Send Sites
Megamorphic Send Sites



Cog VM - Inline Caching

Cog VM - levels of inline caching
No Inline Cache
Monomorphic Send Sites
Polymorphic Send Sites
Megamorphic Send Sites



Cog VM - Inline Caching

Cog VM - levels of inline caching
No Inline Cache
Monomorphic Send Sites
Polymorphic Send Sites
Megamorphic Send Sites



Cog VM - Inline Caching - cont.

Bypass for unlinked send sites
Activate for monomorphic send sites
Bypass for polymorphic and megamorphic send sites
Need tail call and non-tail call JIT code for each send
Copy method lookup code to sender in tail calls



Cog VM - Inline Caching - cont.

Bypass for unlinked send sites
Activate for monomorphic send sites
Bypass for polymorphic and megamorphic send sites
Need tail call and non-tail call JIT code for each send
Copy method lookup code to sender in tail calls



Cog VM - Inline Caching - cont.

Bypass for unlinked send sites
Activate for monomorphic send sites
Bypass for polymorphic and megamorphic send sites
Need tail call and non-tail call JIT code for each send
Copy method lookup code to sender in tail calls



Cog VM - Inline Caching - cont.

Bypass for unlinked send sites
Activate for monomorphic send sites
Bypass for polymorphic and megamorphic send sites
Need tail call and non-tail call JIT code for each send
Copy method lookup code to sender in tail calls



Cog VM - Inline Caching - cont.

Bypass for unlinked send sites
Activate for monomorphic send sites
Bypass for polymorphic and megamorphic send sites
Need tail call and non-tail call JIT code for each send
Copy method lookup code to sender in tail calls



Results

Tail Recursive Tests
Real World Tests



Results

Tail Recursive Tests
Real World Tests



Factorial 500 x 1000

si
sit
ce cog

cog
tce

0

50

100

150

200

250

Ti
m

e
(m

illi
se

co
nd

s)

Version Mean %Imp %SD Std Dev Median

si 258.43 1.41 258.00
sitce 251.61 2.6 0.7 1.02 251.00
cog 223.18 15.46 217.00
cogtce 199.01 10.8 6.9 1.04 199.00



Factorial 5000

si
sit
ce cog

cog
tce

0

2,000

4,000

6,000

Ti
m

e
(m

illi
se

co
nd

s)

Version Mean %Imp %SD Std Dev Median

si 6284.60 12.52 6283.00
sitce 1372.40 78.2 0.4 21.88 1356.00
cog 6587.72 16.45 6591.00
cogtce 1333.28 79.8 0.5 27.36 1314.00



Factorial 5000 Memory

si
sit
ce cog

cog
tce

0

20

40

60

M
em

or
y

Us
ag

e
(m

eg
ab

yt
es

)

Version Mean %Imp %SD Std Dev Median

si 61.11 3.28 60.33
sitce 47.37 22.5 7.7 3.35 47.22
cog 61.92 6.17 59.50
cogtce 46.99 24.1 11.3 3.33 46.89



Compile All Execution

si
sit
ce cog

cog
tce

0

50

100

150

Ti
m

e
(s

ec
on

ds
)

Version Mean %Imp %SD Std Dev Median

si 136.49 2.30 135.52
sitce 129.68 5.0 1.7 0.33 129.60
cog 109.59 0.90 109.29
cogtce 105.86 3.4 0.9 0.45 105.84



Browse Number Class Execution

si
sit
ce cog

cog
tce

0

500

1,000

1,500

2,000

Ti
m

e
(m

illi
se

co
nd

s)

Version Mean %Imp %SD Std Dev Median

si 1842.60 51.99 1850.00
sitce 1759.90 4.5 4.2 56.60 1754.00
cog 1115.40 62.26 1124.00
cogtce 1127.20 -1.1 7.5 55.21 1124.00



Next 2 tests not in thesis



Initially was a fair bit of slowdown for Cog



Method Analyzer Execution

si
sit
ce cog

cog
tce

0

200

400

600

800

1,000

1,200

Ti
m

e
(m

illi
se

co
nd

s)

Version Mean %Imp %SD Std Dev Median

si 1215.38 29.02 1200.00
sitce 1180.62 2.9 3.1 23.67 1169.00
cog 254.14 38.37 243.00
cogtce 247.10 2.8 21.1 37.33 237.00



Conclusions

Significant improvements in execution time for tail recursive cases
Improvements in execution time for most general applications
Memory usage is only significantly affected for deep recursive call
chains
Stack Interpreter outperforms Cog in some tests
Stack Interpreter supports polymorphic calls
Increased JIT compiled method size leads to overhead



Conclusions

Significant improvements in execution time for tail recursive cases
Improvements in execution time for most general applications
Memory usage is only significantly affected for deep recursive call
chains
Stack Interpreter outperforms Cog in some tests
Stack Interpreter supports polymorphic calls
Increased JIT compiled method size leads to overhead



Conclusions

Significant improvements in execution time for tail recursive cases
Improvements in execution time for most general applications
Memory usage is only significantly affected for deep recursive call
chains
Stack Interpreter outperforms Cog in some tests
Stack Interpreter supports polymorphic calls
Increased JIT compiled method size leads to overhead



Conclusions

Significant improvements in execution time for tail recursive cases
Improvements in execution time for most general applications
Memory usage is only significantly affected for deep recursive call
chains
Stack Interpreter outperforms Cog in some tests
Stack Interpreter supports polymorphic calls
Increased JIT compiled method size leads to overhead



Conclusions

Significant improvements in execution time for tail recursive cases
Improvements in execution time for most general applications
Memory usage is only significantly affected for deep recursive call
chains
Stack Interpreter outperforms Cog in some tests
Stack Interpreter supports polymorphic calls
Increased JIT compiled method size leads to overhead



Conclusions

Significant improvements in execution time for tail recursive cases
Improvements in execution time for most general applications
Memory usage is only significantly affected for deep recursive call
chains
Stack Interpreter outperforms Cog in some tests
Stack Interpreter supports polymorphic calls
Increased JIT compiled method size leads to overhead



Conclusions and Future Work

Support polymorphic caches (partially complete!)
Reduce redundant code generation for Cog



Conclusions and Future Work

Support polymorphic caches (partially complete!)
Reduce redundant code generation for Cog



Questions?


