
Dancing Links
an educational pearl

Massimo Nocentini, PhD.
massimo.nocentini@gmail.com

ESUG2019 – August 28, 2019.

massimo.nocentini@gmail.com

outline

^ LinkedList new

add: 'me and the core idea';

add: 'DoubleLink objs';

add: 'exact cover problem';

add: 'AlgorithmX';

add: 'covering and uncovering columns';

add: 'N-Queens and Sudoku problems';

yourself

Hi!

$ whoami

Massimo Nocentini, PhD

Mathematician (algebraic combinatorics, formal methods for algs)

Programmer (automated reasoning, logics and symbolic comp)

https://github.com/massimo-nocentini/dancinglinksst

In Donald’s words1: Suppose x points to an element of a doubly linked
list; let L[x] and R[x] point to the predecessor and successor of that
element. Then:

L[R[x]]← L[x], R[L[x]]← R[x] (1)

remove x from the list; every programmer knows this. But comparatively
few programmers have realized that

L[R[x]]← x, R[L[x]]← x (2)

will put x back again, with no refs to the whole list at all.

1https://arxiv.org/abs/cs/0011047

https://arxiv.org/abs/cs/0011047

Space for sketching

Main ideas

I Operation (2) arises in backtrack programs, which enumerate all
solutions to a given set of constraints and it was introduced in 1979
by Hitotumatu and Noshita.

I The beauty of (2) is that operation (1) can be undone by knowing
only the value of x.

I We can apply (1) and (2) repeatedly in complex data structures that
involve large numbers of interacting doubly linked lists.

I Knuth: “This process causes the pointer variables inside the global
data structure to execute an exquisitely choreographed dance; hence
I like to call (1) and (2) the technique of dancing links.”

I Minato et al. 2 constructs a Zero-suppressed BDD (ZDD) that
represents the set of sols and it enables the efficient use of memo
cache to speed up the search.

2https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14907

https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14907

DoubleLinks and DoubleLinkedLists

DoubleLink objects respond to messages
remove

nextLink ifNotNil: [:next | next previousLink: previousLink].

previousLink ifNotNil: [:previous | previous nextLink: nextLink]

and
restore

nextLink ifNotNil: [:next | next previousLink: self].

previousLink ifNotNil: [:previous | previous nextLink: self]

that implement operations (1) and (2), respectively; moreover, we extend
DoubleLinkedList objects with the message
makeCircular

head

ifNotNil: [

head previousLink: tail.

tail nextLink: head]

to introduce circular, doubly connected, lists.

Exact Cover ∈ NP

Given a matrix of 0s and 1s, does it have a set of rows containing
exactly one symbol 1 in each column?

The problem with matrix


r1
r2
r3
r4
r5


T 

1 1 1 0 1 0
1 1 0 0 0 0
0 0 0 1 0 1
0 0 1 1 0 1
0 0 1 0 1 0

 =


1
1
1
1
1
1



T

is solved by two sets of rows, namely
{r1 = 1, r3 = 1} and {r2 = 1, r5 = 1, r3 = 1}.

We can think of the columns as elements of a universe, and the rows as
subsets of the universe; then the problem is to cover the universe with
disjoint subsets, NP-complete even when each row contains exactly
three 1s.

Space for sketching

AlgorithmX instance side

searchDepth: k forDLRootObject: h partialSelection: cont

^ (h isFixPointOf: [:ro | ro right])

ifTrue: [self yieldNode: top onBlock: cont]

ifFalse: [

memo

at: h columns

ifPresent: [:tree | self yieldNode: tree onBlock: cont]

ifAbsentPut: [

self

searchDepth: k

forDLColumnObject: h chooseColumn

partialSelection: cont]]

AlgorithmX instance side

searchDepth: k forDLColumnObject: c partialSelection: sel

^ self

onEnter: [c cover]

do: [

c

untilFixPointOf: [:co | co up]

foldr: [:r :x |

| y |

y := self searchDepth: k

forDLDataObject: r

partialSelection: sel.

y isZDDBottom

ifTrue: [x]

ifFalse: [

self

uniqueNodeWithDLDataObject: r

withLowerNode: x

withHigherNode: y]]

init: bottom]

onExit: [c uncover]

AlgorithmX instance side

searchDepth: k forDLDataObject: r partialSelection: cont

^ self

onEnter: [r untilFixPointOf: [:ro | ro right]

do: [:j | j column cover]]

do: [self

searchDepth: k + 1

forDLRootObject: r column root

partialSelection: [:sel |

cont

value:

(ValueLink new

value: r model;

nextLink: sel;

yourself)]]

onExit: [r untilFixPointOf: [:ro | ro left]

do: [:j | j column uncover]]

AlgorithmX instance side
The entry point is the message

searchDLRootObject: h onSolutionDo: aBlock

^ self

searchDepth: 0

forDLRootObject: h

partialSelection: [:selLink |

aBlock value: (LinkedList new add: selLink; asSet)]

Knuth advices to use the heuristic (provided by DLRootObject objs)
chooseColumn

^ self chooseColumnWithWeight: #size withOpt: #<

chooseColumnWithWeight: weightBlock withOpt: optBlock

^ self

untilFixPointOf: [:ro | ro left]

foldr: [:j :r |

(optBlock value: (weightBlock value: j) value: (weightBlock value: r))

ifTrue: [j]

ifFalse: [r]]

init: self right

that minimizes the search tree’s branching factor.

DLColumnObject instance side

The operation of covering column c removes c from the header list and
removes all rows in c’s own list from the other column lists they are in.

cover

we remove.

self

untilFixPointOf: [:co | co down]

do: [:i |

i

untilFixPointOf: [:do | do right]

do: [:j |

j nsLink remove.

j column updateSize: [:s | s - 1]]]

Operation (1) is used here to remove objects in both the horizontal and
vertical directions.

DLColumnObject instance side

Finally, we get to the operation of uncovering a given column c. Here is
where the links do their dance:

uncover

self

untilFixPointOf: [:co | co up]

do: [:i |

i

untilFixPointOf: [:do | do left]

do: [:j |

j nsLink restore.

j column updateSize: [:s | s + 1]]].

we restore

Notice that uncovering takes place in precisely the reverse order of the
covering operation, using the fact that (2) undoes (1).

Sudoku to Exact Cover reduction
emptySudokuIndicators

| ones start end |

start := 0. end := 8. ones := LinkedList new.

start to: end do: [:row |

start to: end do: [:column |

start to: end do: [:value |

| rowIndex cellConstraint rowConstraint

columnConstraint boxConstraint model |

model := {(#x -> row). (#y -> column). (#v -> value)} asDictionary.

rowIndex := 81 * row + (9 * column) + value.

cellConstraint := rowIndex @ ((end + 1) * row + column).

rowConstraint := rowIndex @ (9 * row + value + 81).

columnConstraint := rowIndex @ (9 * column + value + (81 * 2)).

boxConstraint := rowIndex

@ (27 * (row // 3) + (9 * (column // 3)) + value + (81 * 3)).

ones

add: ((cellConstraint + 1) asDLPoint primary: true) -> model;

add: ((rowConstraint + 1) asDLPoint primary: true) -> model;

add: ((columnConstraint + 1) asDLPoint primary: true) -> model;

add: ((boxConstraint + 1) asDLPoint primary: true) -> model]]].

^ ones

Soduku solutions
testDLXonSudoku

| grid sols chain matrices |

grid := DLDataObject gridOn: DLDataObjectTest new emptySudokuIndicators.

chain := Generator

on: [:g | AlgorithmX new

searchDLRootObject: (grid at: #root)

onSolutionDo: [:sel | g yield: sel]].

sols := (chain next: 2) contents.

matrices := sols collect: [:sol | "build the corresponding matrix"].

self

assert: matrices first printString

equals:

'(9 8 7 6 5 4 3 2 1

6 5 4 3 2 1 9 8 7

3 2 1 9 8 7 6 5 4

8 9 6 7 4 5 2 1 3

7 4 5 2 1 3 8 9 6

2 1 3 8 9 6 7 4 5

5 7 9 4 6 8 1 3 2

4 6 8 1 3 2 5 7 9

1 3 2 5 7 9 4 6 8)'.

N-Queens to Exact Cover reduction

NQueensIndicators: n

| ones |

ones := LinkedList new.

0 to: n - 1 do: [:row |

0 to: n - 1 do: [:column |

| rowIndex rowConstraint columnConstraint

diagonalConstraint antiDiagonalConstraint model |

model := Dictionary new at: #x put: row; at: #y put: column; yourself.

rowIndex := n * row + column.

rowConstraint := rowIndex @ row.

columnConstraint := rowIndex @ (n + column).

diagonalConstraint := rowIndex @ (2 * n + (row + column)).

antiDiagonalConstraint := rowIndex

@ (2 * n + (2 * n) - 1 + (n - 1 - row + column)).

ones

add: ((rowConstraint + 1) asDLPoint primary: true) -> model;

add: ((columnConstraint + 1) asDLPoint primary: true) -> model;

add: ((diagonalConstraint + 1) asDLPoint primary: false) -> model;

add: ((antiDiagonalConstraint + 1) asDLPoint primary: false) -> model]].

^ ones

N-Queens solutions
testDLXon_NQueens_sequence

| seq elapsedTime |

elapsedTime := [seq := (1 to: 10)

collect: [:i | (self runDLXonNQueens: i next: nil) size]] timeToRun.

self assert: elapsedTime < 2 asSeconds.

self assert: seq "also known as https://oeis.org/A000170"

equals: {1 . 0 . 0 . 2 . 10 . 4 . 40 . 92 . 352 . 724}

testDLXon_8Queens

| matrices |

matrices := self runDLXonNQueens: 8 next: 1.

self

assert: matrices first printString

equals:

'(0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0)'.

Final remarks

I We presented a vanilla implementation of DLX with the ZDD
extension in pure Smalltalk, with an educational savor.

I It is designed to be easy to understand and to play with still
remaining efficient and robust.

I Dancing links are considered the state-of-the-art heuristic for EC
I :) Knuth is still actively working on this (a new fascicle is in prep 3)
I :(Constraints are verbose and rigid to express (currently we use

Point objs), looking for a DSL that makes coding constraints easier
I TODO

I Group column objects using different colours to gain expressivity
I Write reductions to Exact Cover (from 3SAT, Knapsack, TSP, ...)

3https://cs.stanford.edu/~knuth/fasc5c.ps.gz

https://cs.stanford.edu/~knuth/fasc5c.ps.gz

Thanks!

yieldNode: tree onBlock: cont

tree sets

collect: [:each | (each collect: #model) as: LinkedList]

thenDo: [:sel |

| link |

link := sel isEmpty ifTrue: [nil] ifFalse: [sel firstLink].

cont value: link].

^ tree

uniqueNodeWithDLDataObject: r withLowerNode: x withHigherNode: y

| key |

key := Array with: r with: x with: y.

^ zDDTree

at: key

ifAbsentPut: [| z |

z := ZDDNode new model: r; lower: x; higher: y; yourself.

x parent: z.

y parent: z.

z]

DLDataObject class side

gridOn: aCollection

| rootObj columns rows headers allObjs |

aCollection

sort: [:vAssoc :wAssoc |

| v w |

v := vAssoc key.

w := wAssoc key.

v y <= w y and: [v x <= w x]].

allObjs := Dictionary new.

headers := DoubleLinkedList new.

columns := Dictionary new.

rows := Dictionary new.

rootObj := DLRootObject new

addInDoubleLinkedList: headers direction: #we;

yourself.

allObjs at: #root put: rootObj.

"to be contd..."

DLDataObject class side
gridOn: aCollection

"...contd..."

aCollection

do: [:anAssociation |

| aPoint columnObj dataObj column row |

aPoint := anAssociation key.

column := columns

at: aPoint y

ifAbsentPut: [| headerObj newColumn |

headerObj := DLColumnObject new size: 0; root: rootObj; yourself.

aPoint primary

ifTrue: [headerObj addInDoubleLinkedList: headers

direction: #we]

ifFalse: [DoubleLinkedList

circular: [:dll | headerObj addInDoubleLinkedList: dll

direction: #we]].

newColumn := DoubleLinkedList new.

headerObj addInDoubleLinkedList: newColumn direction: #ns.

allObjs at: aPoint y put: headerObj.

newColumn].

"..to be contd further..."

DLDataObject class side

gridOn: aCollection

"...contd"

columnObj := column first.

dataObj := DLDataObject new

column: columnObj;

point: aPoint;

model: anAssociation value;

yourself.

row := rows at: aPoint x ifAbsentPut: [DoubleLinkedList new].

dataObj

addInDoubleLinkedList: column direction: #ns;

addInDoubleLinkedList: row direction: #we.

columnObj updateSize: [:s | s + 1].

allObjs at: aPoint put: dataObj].

headers makeCircular.

columns valuesDo: #makeCircular.

rows valuesDo: #makeCircular.

^ allObjs

