
Relational Programming in Smalltalk

Massimo Nocentini

University of Florence, Italy

ESUG2018

outline

^ LinkedList new

add: 'me and motivations';

add: 'Refutation and Unification resolutions ';

add: 'Microkanren in Smalltalk';

add: 'Dyck paths and the McCulloch machine';

yourself

Hi!

$ whoami

Massimo Nocentini

PhD student @ University of Florence

Mathematician (algebraic combinatorics, formal methods for algs)

Programmer (automated reasoning, logics and symbolic comp)

https://github.com/massimo-nocentini

$ clear

I believe microkanren is, first of all, an educational beast,
concerning unification, lazy streams, backtracking and
optimization; the abstract definition was shown by Dan Friedman
and Jason Hemann at Scheme ’13, Alexandria.

I repeat the exercise of writing it in:
I Python, native generators :) limits on recursive calls :(
I OCaml, algebraic datatypes :) hard to extend :(
I Smalltalk, simple, fast and clear :) many dispatching msgs :/

Main idea

In math a relation P is usually characterized by

∀a, b, c. P(a, b, c)↔ a+ b = c entails P(1, 2, 3)

can be expressed using either the imperative style
a := 1.

b := 2.

c := a + b.

Object assert: [c = 3].

or the functional style
Object assert: [

([:a :b | a + b] value: 1 value: 2) = 3]

or, finally, the declarative style
Object assert: [

[:a :b :c | a + b = c] value: 1 value: 2 value: 3]

Resolution by Refutation

Let α be a sentence in CNF and M(α) the set of models that
satisfy it, where a model is a set of assignments that make α true.

α is valid if it is true in all models; oth,
α is satisfiable if it is true in some model.

Let |= and ⇒ denote the entail and imply relations, respectively, in

α |= β↔
M(α) ⊆M(β)↔

(α⇒ β) is valid ↔
¬(¬α∨ β) is unsatisfiable;

therefore, to prove a sentence α reduces to decide

¬α |=⊥ ↔ α is valid,

where ⊥ denotes the empty clause, namely falsehood.

Resolution by Refutation

The resolution rule is a complete inference algorithm,

(l0, . . . , li, . . . , lj−1) (m0, . . . ,mr, . . . ,mk−1) li = ¬mr

(l0, . . . , li−1, li+1, . . . , lj−1,m0, . . . ,mr−1,mr+1, . . . ,mk−1)

where (l0, . . . , li, . . . , lj−1) = l0 ∨ . . .∨ li ∨ . . .∨ lj−1,
for all lq,mw ∈ {0, 1}.

The DPLL algorithm is a recursive, depth-first enumeration of
models using the resolution rule, paired with heuristics early
termination, pure symbol and unit clause to speed up.

Resolution by Unification

Unification is the process of solving equations among symbolic
expressions; a solution is denoted as a substitution θ, namely a
mapping that assigns a symbolic values to free variables.

Let x and y be free variables, the set

{cons(x, cons(x, nil)) = cons(2, y)}

has solution θ = {x 7→ 2, y 7→ cons(2, nil)}; moreover, the set

{y = cons(2, y)}

has no finite solution; on the other hand,

θ = {y 7→ cons(2, cons(2, cons(2, ...)))}

is a solution upto bisimulation.

Resolution by Unification
let G be a set of equations, unification rules are

delete G ∪ {t = t}→ G

decompose G ∪ {f(s0, . . . , sk) = f(t0, . . . , tk)} entails

G ∪ {s0 = t0, . . . , sk = tk}

conflict if f 6= g∨ k 6= m then

G ∪ {f(s0, . . . , sk) = g(t0, . . . , tm)}→⊥
eliminate if x 6∈ vars(t) and x ∈ vars(G) then

G ∪ {x = t}→ G{x 7→ t} ∪
{
x , t

}
occur check if x ∈ vars(f(s0, . . . , sk)) then

G ∪ {x = t(s0, . . . , sk)}→⊥

microkanren

Let solution, substitution and state be synonyms; so, µ-kanren
I is a DSL for relational programming written in Scheme
I is a purely functional core of miniKanren
I provides explicit streams of satisfying states
I encodes math rel using a goal-based approach
I uses resolution by unification via structural induction

A goal is an object that responds to the #onState: selector, it
receives a substitution and returns a Chain object of substitutions.

Chain hierarchy

We model a (possibly infinite) space of objects with the Chain

hierarchy, which has Bottom and Knot as subclasses which denote
the empty and a populated set, respectively.

Although Pharo provides the Generator class, we write our version
of lazy enumeration, which is purely functional (neither clever uses
of thisContext nor reentrant blocks).

Encodes the two monadic operations mplus and bind, which allow
us to merge two Chains and to combine a Chain obj to yield an
extended Chain obj, respectively.

Dispatch over two strategies Sequential and Interleaved in order
to enumerate solution spaces.

Chain subclass: #Bottom

BlockClosure>>links: anObj

^ Chain item: anObj linker: self

Chain class>>bottom

^ Bottom new

Chain class>>item: anObj linker: aBlockClosure

^ Knot new

item: anObj;

linker: aBlockClosure;

yourself

bind: aGoal interleaved: anInterleaved

^ self

mplus: anotherChain interleaved: anInterleaved

^ anotherChain value

atMost: anInteger

^ self

mature

^ LinkedList new

Chain subclass: #Knot
bind: aGoal interleaved: anInterleaved

| alpha beta |

alpha := aGoal onState: item.

beta := [self next bind: aGoal interleaved: anInterleaved].

^ alpha mplus: beta interleaved: anInterleaved

mplus: anotherChain interleaved: anInterleaved

^ [:_ | anotherChain value

mplus: [self next]

interleaved: anInterleaved] links: item

next

^ linker value: item

atMost: n

^ n isZero

ifTrue: [Chain bottom]

ifFalse: [[:_ | self next value atMost: n - 1] links: item]

mature

^ self next mature

addFirst: item;

yourself

ChainTest

ints: i

^ [:a | self ints: a + 1] links: i

fib: m fib: n

^ [:_ | self fib: n fib: m + n] links: m

collatz: o

^ [:_ | o even

ifTrue: [self collatz: o / 2]

ifFalse: [self collatz: 3 * o + 1]] links: o

testNumbers

self

assert: (self nats atMost: 10) mature

equals: (0 to: 9).

self

assert: (self fibs atMost: 10) mature

equals: {0 . 1 . 1 . 2 . 3 . 5 . 8 . 13 . 21 . 34}.

self

assert: ((self collatz: 10) atMost: 10) mature

equals: {10 . 5 . 16 . 8 . 4 . 2 . 1 . 4 . 2 . 1}.

Goal hierarchy
microkanren represents math rels using the Goal hierarchy
I Succeed it is satisfied by each sub;
I Fail it is not satisfied by any sub;
I Or it is satisfied if at least one obj it consumes can be satisfied;
I And it is satisfied if both objs it consumes can be satisfied;
I Fresh it introduces logic vars into the goal it combines;
I Unify it is satisfied if the two objs it consumes can be unified.

Moreover, a substitution (aka, a set of assignments) is represented
by a Dictionary obj, wrapped by State obj to count the number of
logic vars introduced by Fresh goals.

Our substitutions are triangular in the sense that if

θ = {x 7→ y, y 7→ z, z 7→ 3}

then x 7→ 3 is subsumed by θ, this is implemented in State>>#walk.

State

State>>walk: anObj

| k |

k := anObj.

[k := substitution at: k ifAbsent: [^ k]] repeat

A substitution is extended by
State>>at: aVar put: aValue

| s |

s := substitution copy.

s

at: aVar

ifPresent: [:v |

aValue = v

ifFalse: [UnificationError signal]]

ifAbsent: [s at: aVar put: aValue].

^ self class new

birthdate: birthdate;

substitution: s;

yourself

Goal subclass: #[Succeed | Fail | Disj | Conj]

In parallel, true and false have logical brothers
Succeed>>onState: aState

^ Chain with: aState

Fail>>onState: aState

^ Chain bottom

respectively; btw, for conjuction and disjunction we have
Disj>>onState: aState

^ interleaving of: ((either onState: aState)

mplus: [or onState: aState])

Conj>>onState: aState

^ interleaving of: ((both onState: aState) bind: and)

Goal subclass: #Fresh

Fresh>>onState: aState

^ aState collectVars: (1 to: receiver numArgs) forFresh: self

State>>collectVars: aCollection forFresh: aFresh

| nextState vars |

nextState := self class new

substitution: substitution;

birthdate: birthdate + aCollection size;

yourself.

vars := aCollection collect: [:i | Var id: i].

^ aFresh onState: nextState withVars: vars

Fresh>>onState: aState withVars: aCollection

| g |

vars := aCollection.

g := receiver valueWithArguments: vars.

^ g onState: aState

BlockClosure>>fresh

^ Goal fresh: self

Goal subclass: #Unify

Object>>unifyWith: another

^ Goal unify: self with: another

Unify>>onState: aState

^ [| extended_state |

extended_state := Unifier new

unify: this with: that onState: aState.

Goal succeed onState: extended_state]

on: UnificationError

do: [Goal fail onState: aState]

Unifier>>unify: anObj with: anotherObj onState: aState

| aWalkedObj anotherWalkedObj |

aWalkedObj := aState walk: anObj.

anotherWalkedObj := aState walk: anotherObj.

^ aWalkedObj unifyWith: anotherWalkedObj

usingUnifier: self

onState: aState

Unifier

unifyObject: anObj withObject: anotherObj onState: aState

^ anObj = anotherObj

ifTrue: [aState]

ifFalse: [UnificationError signal]

unifyVar: aVar withObject: anObject onState: aState

^ aState at: aVar put: anObject

unifyVar: aVar withVar: anotherVar onState: aState

^ aVar = anotherVar

ifTrue: [aState]

ifFalse: [

self unifyVar: aVar withObject: anotherVar onState: aState]

unifyLinkedList: c withLinkedList: d onState: aState

^ c size = d size

ifTrue: [(c zip: d)

inject: aState

into: [:s :p | self unify: p key with: p value onState: s]]

ifFalse: [UnificationError signal]

Goal subclass: #Cond
Cond>>if: ifGoal then: thenGoal

clauses add: ifGoal -> thenGoal

Cond>>ifPure: aStrategy

if := [:c :o |

IfPure new

question: c key answer: c value otherwise: o;

streamCombinationStrategy: aStrategy;

yourself]

Cond>>e

self ifPure: Sequential new

Cond>>i

self ifPure: Interleaved new

Cond>>onState: aState

| g |

else ifNil: [self else: false asGoal].

g := clauses copy

add: else;

reduceRight: if.

^ g onState: aState

Dyck paths

Let D be the set of Dyck paths and let be the CFG

 = ε | ()

where ε is the empty string; so, enumerate D using .
dycko: alpha

^ Goal cond e

if: alpha nilo then: true asGoal;

else: [:beta :gamma |

(sexpTheory let: alpha

be: ($(cons: beta)

append: ($) cons: gamma)) &

([self dycko: beta] eta &

[self dycko: gamma] eta)] fresh

Dyck paths

testDycko

| g |

"enumeration"

g := [:alpha | combTheory dycko: alpha] fresh.

self

assert: (g solutions atMost: 20)

equals:

({nil . '()' . '(())' . '()()' . '(()())' . '()(())' .

'(())()' . '()()()' . '(()()())'. '()(()())' .

'(())(())' . '()()(())' . '((()))' . '()(())()' .

'(())()()' . '()()()()'. '(()()()())' . '()(()()())' .

'(())(()())' . '()()(()())'} collect: #asCons).

"an invalid Dyck path"

g := [:alpha | combTheory dycko: '(()(())()(' asCons] fresh.

self assert: g solutions all equals: {}

McCulloch’s machine and the MC lock puzzle

Let X and Y be natural numbers in machine

C =

{
2X

◦→ X
,
X

◦→ Y

3X
◦→ Y2Y

}

question: does exist a number α such that α ◦→ α?
consumes: two_alpha produces: alpha machine: aMachine

^ two_alpha unifyWith: (2 cons: alpha)

consumes: three_alpha produces: alpha_two_alpha machine: aMachine

^ [:beta :gamma |

(three_alpha unifyWith: (3 cons: beta)) &

((self associate: gamma is: alpha_two_alpha machine: aMachine) &

(aMachine proves: beta relates: gamma))] fresh

McCulloch’s machine and the MC lock puzzle
InductiveRelationsTheory>>proves: anObj relates: anotherObj

| g |

g := Goal cond i.

rules do: [:r | g if: (r consumes: anObj

produces: anotherObj

machine: self)

then: true asGoal].

^ g

testFirstMachine

| g |

"McCulloch's first machine"

g := [:a | self mcculloch proves: a relates: a] fresh.

self assert: (g solutions atMost: 1) equals: {#(3 2 3) asCons}.

"Montecarlo lock"

g := [:a | self mclock proves: a relates: a] fresh.

self

assert: ((g solutions atMost: 1) collect: #asLinkedList)

equals: {#(5 4 6 4 2 5 4 6 4 2)}

End

A quick check:

323
◦→

End

A quick check:

23
◦→

323
◦→

End

A quick check:

23
◦→ 3

323
◦→

End

A quick check:

23
◦→ 3

323
◦→ 323

End

A quick check:

23
◦→ 3

323
◦→ 323

Future directions:
I unification is just a constraint...
I ...so add disequality, type checks and other constraints
I impure operators, such as Prolog’s cut (!)
I automatic message dispatching for unifications

Thanks!

