

Rolemodeling as a graphic extension of the
Smalltalk IDE

● Hobby, Experience

● Based on the ideas of Trygve Reenskaug

● 35 years dilemma!
many 1000 lines of code = a big labyrinth
when a developer wants to change anything (old/no doc)

● 35 years only strings for code!
But some times a graphic can say more then 1000 words!

Peter Werner, peter_eh.werner@t-online.de

Introduction & Motivation

mailto:peter_eh.werner@t-online.de

Example
A class diagram in a system
browser which represents always
the current code –> that is possible!

Oh – it can be helpful !

But:
● it is to big – scroll, scroll …

To many classes !!!
To many details !!!

● Many people have tried to
intruduce graphic elements into
software development with a
small success – why?

Class diagram

==> we need a smaller graphic?

The feeling of a Role

● E.g. take an actor (an Object) in a theater

● He can play 1 or more Roles

● He can be exchanged by another one without any influence of the
played story

● The story is based on a set of Roles and Relations between
them

● The story gives a statement (parable or Pattern) form the author

==> People and animals learn by playing Roles and they think in
 Roles and Pattern intuitive (by default).

==> new point of view on Objects

Definition of Role and Rolemodel

● A Role describes a part of an Object of the real world (Object
System)

– Similar to a class under multiple inheritance

● A Rolemodel describes a part (story/Pattern) of the real world from a
given point of view, called Aspect, by:

– A small fixed set of Roles and

– Relations between the Roles

● Roles have properties e.g.:

– modeled (which is to implement) or

– external, to express how the the Model is to use (incoming,
outgoing). The set of external Roles is called the Environment of
the Model.

Example: Role Relation Diagram
(a view on a Rolemodel; is garphic oriented code)

Methods

value <observed:Observed

Properties

OrderedCollection

add: on; del: on

Properties

get: on; set: on

Scenarios

value ^Observed

value <observed:Observed

setValue <observed:Observed

addDependent <dep:Dependent

removeDependent <dep:Dependent

changed <Symbol with :Observed

User Observer

<

Observed
1

<

Dependent

0-N

update<with<from<

Properties

get: on; set: on

1

value <Observed
value <observed:Observed

The development process

Object
System

Model

Aspect
(= any part of the Object System)

R1

R3

R2

R1*

R4 R2*

Aspects

Object 3

Object 1

Object 2

Object 4

Class
1

Class
4

.....

OO Development
Process

Rolemodeling

● isolated class and method
descriptions

● comments/doc ?

● collecting variables and
methods per class

● detect Aspects

● documents every Aspect
explicit via a Rolemodel,

● so that a Rolmodel has
small number of
collaborating Roles (blue)

● reuse Rolemodels!

Composition

R 1
R1

R 1
R4

R 1
R2

R 1
R3

R 1
R 32

Object
System

Model

R 1
R 12

R 1
R 21

R 1
R 13

R 1
R 22

R 1
R 23

R 1
R 31

R 1
R 34

Aspect 1

Aspect 3

Aspect 2

Object
2

Object
4

Object
1

Object
3

Composition

● define a simple Rolemodel RM
or

● compose it by others:
Composition(RMi) =

def.

 modify&generalize(
unify i=1...n(

derive&specialize(

RMi)))

● simplify it for high reuse,
hide/unhide details and already
completed parts

● plugged = derive + specialize +
plugg it

● add Role Changes = message
call

Role Work Shop (RWS)

Brings a ‘common language’ for all participants of the development process (in
analysis, design, partly implementation) by:

● extending the Smalltalk IDE via some browsers

● which allow to model the top level things of an Application by 4 different
Diagrams (= real graphic statements):

– Role Relation (bit similar to a class diagram)

– Scenario (bit similar to message flow diagram)

– Model Composition (new)

– Design Class (new, complete the Model, can ‘generate’
complete Control Code, strongly separated from *)

● Diagrams have slots for text code snippets

● Detail Code* is always written as text (outside the Rolemodels)

Example: Scenario
(a view on a Rolmodel)

Properties

OrderedCollection(Dependent)

do <D[<Dependent]

Observed := observed

[D] update <#observed with <observed from <Observer

O

User Observer

<

Dependent

value <observed

SC: value <observed:Observed

< input parameter (readOnly)
: input parameter like Smallatlk
^ output parameter

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9

