Martin is getting the
projector
to work
with his
laptop.



Replicated
Service Objects

A Strategy for
Distributed
Applications

Martin McClure @GEMTALI\W

SYSTEMS



Background:
GemStone/S



30 Years!



w \)E{' i
V!O Loge Development ¢

GemStone
Multi-User
Object-oriented
ey B :
: 1%

orporation




GemStone/S

*Server-side Smalltalk
*Object Database



Server-side
Smalltalk

eHeadless
eMulti-User
eScalable



Object
Database

*One persistent “image”
*Shared transactionally

* Merged at commit

* Conflicts are detected



GemBuilder for
Smalltalk (GBS)

eInterfaces VW or VA
Smalltalk to GemStone



w \)E{' i
V!O Loge Development ¢

GemStone
Multi-User
Object-oriented
ey B :
: 1%

orporation




Martin McClure

Originally from St. Paul, Minnesota, Martin has worked
with Smalltalk for over 10 years. He is glad to be here
where he will work on GemBuilder for Smalltalk projects.
In addition to reading science fiction, Martin is a
glassblower and has plans to build a studio in his back
yard. Some of his glass work is in his cube.



GemBuilder for
Smalltalk (GBS)

eInterfaces VW or VA
Smalltalk to GemStone



GBS Main Features

*Forwarders
* Remote messaging
*Replicates
e Synchronized copy
* (new) Remote
messaging



Forwarder

Server
Client



Server

Client

19pJ1em.o |



Server

Client

J\f\f\f@

19pJ1em.o |



Forwarder

Server
Client



Server

Client

djedijdoy



Replicate

Server
Client




Server
Client




Replicate

Server
Client




Replicate

Server
Client




Server

Client

djedijdoy



Replicate

Server
Client




Replicate

Server
Client




Server
Client




Server

Client

djedijdoy



Transparent
Distribution



Transparent
Distribution

Good Idea



Transparent
Distribution

W Idea




Distribution
Concerns

eCorrectness
*Reliability
Performance



Distribution
Concerns

v/ *Correctness
*Reliability
Performance



Distribution
Concerns

v/ *Correctness
X *Reliability
Performance



Distribution
Concerns

v/ *Correctness
X *Reliability
X *Performance



An

Embarrassing
Story






One
Month



Tools used

Forwarders



Lessons

*Test scaling

*Test with latency

*Need better design
pattern



Replicated
Service
Objects



Example:
Inspector
Service



O

Server

Client



Inspector
Service

theObject
properties

Server

Client



Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> 10'
ly' _> 10'

Server

Client



Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> 10'
ly' _> 10'

Ly

N

Inspector
Service

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> ’0'
‘y' _> ’0'

properties




Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> 10'
ly' _> 10'

1

gL

Inspector
Service

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> ’0'
ly' _> ’0'

properties



Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> 10'
ly' _> 10'

Ly

N

Inspector
Service

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> ’0'
‘y' _> ’0'

properties




Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> 10'
ly' _> 10'

1

gL

Inspector
Service

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> ’0'
‘y' _> ’0'

properties



Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'

'‘class' -> 'Point’
'x' _> 10'
ly' _> 10'

Inspector
Service

Dictionary

'self' ->'0@0'
'class' -> 'Point’
’X’ _> 1 42

properties




Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x' _> 10'

lyl _> 10'

Server

Client

Inspector
Service

Dictionary

'self' ->'0@0'
'class' -> 'Point’
’X’ _> 1 42

properties




Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x'->"' 42
ly' _> IO'

Inspector
Service

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x'->"' 42

properties




Inspector
Service

CAVAVAV theObject

properties

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x'->"' 42
ly' _> IO'

Inspector
Service

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x'->"' 42

properties




Inspector
Service

theObject
properties

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x'->"' 42
ly' _> IO'

Inspector
Service

Dictionary

'self' ->'0@0'
'class' -> 'Point’
'x'->"' 42

properties




Principles

*Replicate everything
you'll need frequently



Principles

*Represent information
as basic objects when
necessary.



Principles

*Do everything you can
predict in a single round
trip.



Replicated
Service Objects

A Strategy for
Distributed
Applications

Martin McClure @GEMTALI\W

SYSTEMS



