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GemStone/S

*Server-side Smalltalk
*Object Database



Server-side
Smalltalk

eHeadless
eMulti-User
eScalable



Object
Database

*One persistent “image”
*Shared transactionally

* Merged at commit

* Conflicts are detected



GemBuilder for
Smalltalk (GBS)

eInterfaces VW or VA
Smalltalk to GemStone
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Martin McClure

Originally from St. Paul, Minnesota, Martin has worked
with Smalltalk for over 10 years. He is glad to be here
where he will work on GemBuilder for Smalltalk projects.
In addition to reading science fiction, Martin is a
glassblower and has plans to build a studio in his back
yard. Some of his glass work is in his cube.



GemBuilder for
Smalltalk (GBS)

eInterfaces VW or VA
Smalltalk to GemStone



GBS Main Features

*Forwarders
* Remote messaging
*Replicates
e Synchronized copy
* (new) Remote
messaging



Forwarder

Server
Client
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Transparent
Distribution

Good Idea



Transparent
Distribution

W Idea




Distribution
Concerns

eCorrectness
*Reliability
Performance
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Tools used

Forwarders



Lessons

*Test scaling

*Test with latency

*Need better design
pattern
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Principles

*Replicate everything
you'll need frequently



Principles

*Represent information
as basic objects when
necessary.



Principles

*Do everything you can
predict in a single round
trip.
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