

A Tour to Spur for
Non-VM Experts

Guille Polito, Christophe Demarey
ESUG 2016, 22/08, Praha

From a user point of view

We are working on the new Pharo Kernel

● Bootstrap: create an image from scratch
- Classes
- Global objects
- Processes and contexts

● Image Initialization: What is the correct order?

BTW, see our talk on this ;)
Mission Pharo Kernel, Thursday 10 am

What is this talk about?

Dec 14, 2015; 11:08am
[IMPORTANT] Starting migration to Spur
VM

Initial Motivation to look into Spur

1) How do we move to Spur
as fast as possible?

2) Should we /
How do we adapt to it?

3) What are the risks?

Motivation of this talk #1: Education

Explain what is Spur

Determine if a problem comes
from image side or VM side?

Motivation of this talk #2:
Understanding the Impact

Is my application compatible?

Will It break? Do I have to port it?

Part 1:
Demolishing Myths

What is Spur?

Spur is not a new Virtual Machine

 Its underlying execution engine is the same as in Cog
 (same bytecode, same interpreter, same JIT compiler)

Spur is not a new Garbage Collector

It just implements a new garbage collector
 (which, BTW, is not new...)

Spur is not a new Object Format.

 It just implements a new object format
 (which, BTW, is just the means to an end)

So... what is Spur?

Spur is a new Memory Manager for Cog VM.

 - New object representation in memory
 (that allows ephemerons, pinned objects,...)

 - New memory organization of Pharo images
 (that allows to better manage resources)

Spur in a Nutshell

It's a Cog VM

 + 64 bits support

 + faster: x1.8 speedup

 + larger images (> 2 Go)

 + ephemeron support

 and more ...

Spur > 64-bits support

● No more need to install 32-bits libraries

● Images with size > 2 Go

Spur > faster access to classes
Class Table

● Direct access to
class objects

0

1

2

3

4

5

6

7

8

Array (hash=0)

String (hash=6)

Next page...

Spur > faster
Garbage Collector

● “Young objects die young (and fast)”

● Added survivor segments (future and past) to
the young space
=> allows more minor GC instead of major GC

future

Old space Young Space

past

e
d
e
n

Major GC (mark & sweep)
Minor GC

(scavenger)

Spur > Fast become

No more hangs in large images when using #become:

(e.g. Moose with a big famix model)

Why? Spur introduces forwarders

● prevents to scan the whole memory

● replaces pointers when they are accessed

● implemented by a partial read barrier1

Cheap in most cases (just one indirection)

Costly if you rely a lot on primitives fallback

1. Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient Support
of Live Object-Oriented Programming. ISMM'15

Spur > faster
Immediate objects

New immediate objects

● Character

● Float (only 64-bits)

Speed-up in wide strings

Speed-up in float arithmetic and memory saving

Spur > other features

Spur object format:

● All classes are compact
=> only two kind of headers (3 before Spur)

● Support for pinned-objects (see UFFI talk on Friday)

● Ongoing support of read-only objects

● Still 2 unused bits

Spur > scalability

● Memory is now divided in several segments

● No more need to have a contiguous chunk of
memory

Memory
segment

Memory
segment

Memory
segment

Memory
segment

Spur > reliability

● Ephemeron finalization support

● Avoid memory leaks

BTW, see our OTHER talk on this ;)
A Weak Pharo story, Thursday, 3 pm

Part 2:
Porting applications and

frameworks to Spur

Cog

Spur

How do I port
my application

to Spur?

Porting Applications

Porting Applications

Porting Applications

Porting Applications

Okay, maybe just wait that your developer friends
port your favorite frameworks.

Porting Frameworks/Libraries

Porting Basics #1

The number hierarchy changed

● Beware if you have visitors

● Beware if you have overrides

Porting Frameworks/Libraries

Porting Basics #2

Character is now immediate

● Beware if you have overrides that use the

internal state

Porting Frameworks/Libraries

Porting Basics #3

New (enhanced) ephemeron finalization

● If you need finalization you'll probably want to

use the new one

BTW, see our OTHER talk on this ;)

Porting Frameworks/Libraries

A Weak Pharo story, Thursday, 3 pm

Porting Basics #4

Native Boost is being deprecated

● If you are using FFI, you will need to review your

bindings

Porting Frameworks/Libraries

Native Boost UFFI

Spur Behind the Scenes

VM development hosted on GitHub:
OpenSmalltalk / opensmalltalk-vm

Why is it a good news?

● Brings together the VM community

● Easier to contribute

– Pull requests

– Issue tracker

– Documentation:
https://github.com/OpenSmalltalk/opensmalltalk-
vm/blob/Cog/CONTRIBUTING.md

VM build all flavors through
Travis CI

Still missing VM tests. Upcoming?

Where to find VM binaries?

● Pharo

http://files.pharo.org/vm/

Squeak, NewSpeak

https://bintray.com/opensmalltalk/vm/cog

Conclusion

http://files.pharo.org/vm/
https://bintray.com/opensmalltalk/vm/cog

Should I move to Spur?

Bounce
BubbleSort

DeltaBlue
Fannkuch

GraphSearch
Json

Mandelbrot
Nbody

PageRank
Permute

Queens
QuickSort

Sieve
Storage

Towers

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Pre-Spur

Spur

by Stefan Marr, Apr 06, 2015

Should I move to Spur?

✔ 64-bits support

✔ Increased performances: x1.8 speedup

✔ Scalability, Reliability and open to new
features

– image not compacting anymore (will be fixed soon)

EXTRA SLIDES!

1) Class tables

2) Forwarders

3) Ephemeron Finalization

4) The Scavenger GC

Dissecting Spur...

Chapter 1
Classes are in Tables

(and they hide in tables)

1.1 The old object header...

1.1 Compact classes

Smalltalk compactClassesArray

1.1 Cons of the old object header

● A full word is used to indicate an object's class

– 4G classes in 32 bits

– 16E (2^60) classes in 64 bits (!!)

● Three different headers
 => checks for the header type are common

1.2 New class header

1.2 Class table

0

1

2

3

4

5

6

7

8

Array (hash=0)

String (hash=6)

Next page...

1.2 Class table

class idx = 0

0

1

2

3

4

5

6

7

8

Array (hash=0)

String (hash=6)

Next page...

1.2 Pros of the new object header

● 2^22 classes (4M). Still enough and efficient.

● Compatible with 64bits

● All classes are compact => only two kind of headers

1.2 Hidden objects

0

1

2

3

4

5

6

7

8

Array (hash=0)

String (hash=6)

Next page...

Class idx = 1

1.2 Hidden objects?

● The class table is an object (and lives in the heap)

● Its class index is “hidden”:

– Array allInstances

will iterate objects by class index

● In the class table:

– Indexes 0-15 are reserved for tagged objects

– Indexes 16-32 are reserved for hidden classes

1.3 Maintaining the class table

Classes are normal objects...

They are created with no special primitives...

But...

How does the VM know an object is a

class to put it into the class table?

1.3 Identifying classes by definition

A class is an object that is instantiated:

A class enters the class table
upon instantiation

1.3 But the index is the hash!

But... hashes are assigned lazily for all objects:

Classes, on instance-side,

define a special hash method

Behavior >> basicIdentityHash

<primitive: 175>
self primitiveFailed

Object >> basicIdentityHash

<primitive: 75>
self primitiveFailed

Chapter 1 - Conclusions

● Classes are organized in tables

● All classes are compact

● Simpler object header

● Still place for 4M classes

● On the image side, is almost transparent

Chapter 2
The forwarder plague

2.1 Become

● Swaps two objects

– (actually, swaps two object's identity)

● Useful for:

– Updating and migrating objects

– Install proxies

– Replace an object's behavior

2.1 The old become

● Full scanned all memory

● And was SLOOOOOW

2.1 Lazy become

ba

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

2.1 Lazy become

b becomeForward: a.

User's code

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

ba

2.1 Lazy become

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

b becomeForward: a.

User's code

a forwarder!

2.1 Lazy Become

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

b becomeForward: a.
b doSomething

User's code

a forwarder!

2.2 The read barrier

● A full read barrier would be too expensive

– (on every read, on every primitive, on every
message send...)

● The read barrier is implemented in two places:

– Message send lookup failure

– Primitive failure

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

2.2 Message send lookup failure

method := (self lookupSelector: selector inClass: class).

method ifNil: [

 (receiver isForwarder) ifTrue: [

 receiver := receiver forward.
 “scan also the objects in the stack”].

 method := (self lookupSelector: selector inClass: class).

].

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

2.2 Primitive failure

self performPrimitive: primitiveNumber.

self primitiveFailed ifTrue: [

 “scan the stack looking for forwarders and retry”

 self performPrimitive: primitiveNumber.

].

Eliot Miranda, Clément Bera. A Partial Read Barrier for Efficient
Support of Live Object-Oriented Programming. ISMM'15

2 Conclusions

● Become does not need full scan anymore

● A forwarder replaces the object in place

● Two-way become copies object at the end

● Forwarders are bypassed using a partial read barrier:

– Message lookup failure

– Primitive failure

● No noticeable overhead

3.5 Scavenger GC

● “Young Objects Die Young (and quick)”

● Young objects are created in eden

● Objects are “tenured” after surviving several
generations

● Tenured objects go to old space

3.5 Scavenger GC
Old space New Space

future past

e
d
e
n

3.5 Scavenger GC
Old space New Space

future past

e
d
e
n

● Mark and Sweep (marking collector)

● Runs “every blue moon” on the entire memory

● Slow

● Scavenger (copying collector)

● Runs often, only in new space

● Object tenure (to old space)

depends on the ratio of

allocation

3.5 Scavenger GC
New Space

future past eden

1) Future is always empty during execution

3.5 Scavenger GC
New Space

future past eden

1) Future is always empty during execution

2) On a GC, past and eden objects that are referenced are copied to future

3.5 Scavenger GC
New Space

past future eden

1) Future is always empty during execution

2) On a GC, past and eden objects that are referenced are copied to future

3) Then, future and past spaces are swapped

3.5 Scavenger GC

Two questions remain:

● How does the scavenger do a GC without
iterating the entire heap?

● How does he know object ages?

3.5 Scavenger GC

Two questions remain:

● How does the scavenger do a GC without
iterating the entire heap?

● How does he know object ages?

It maintains a set of “objects in new space referenced from old space”

By their addresses! Lower addresses are younger....

Is that all?

● Pinned objects?

● The finalization queue?

● Memory segments, bridges, …?

● (The not working) Memory compaction?

● New immediate objects?

● ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

