a first look at

Strings in Pharo

Damien Pollet — Inria Lille

International Workshop on Smalltalk Technology — ESUG 2015, Brescia

INVENTORS FOR THE DIGITALWORLD

A First Analysis of String APIs:
the Case of Pharo

Damien Pollet

Université
de Lille

SCIENCES
ET TECHNOLOGIES

Abstract

Most programming languages natively provide an abstraction
of character strings. However, it is difficult to assess the de-
sign or the API of a string library. There is no comprehensive
analysis of the needed operations and their different varia-
tions. There are no real guidelines about the different forces
in presence and how they structure the design space of string
manipulation. In this article, we harvest and structure a set of
criteria to describe a string API. We propose an analysis of
the Pharo 4 String library as a first experience on the topic.

Keywords Strings, API, Library, Design, Style

RMod ‘

Stéphane Ducasse

RMoD — Inria & Université Lille 1
damien.pollet@inria.fr

case of
hard to

For
in Rub
in Java
the String

45 are particularly
|';f,‘(l5| nstraints.
2ve a large API:
,Zgn 100 methods,
ind 40. In Pharo!,
tinct messages, not
counting in large API is not al-
ways a problem at strings have many use
cases, from concatenation and printing to search-and-replace,
parsing, natural or domain-specific languages. Unfortunately,

strings are often abused to eschew proper modeling of struc-
tured data, resulting in inadequate serialized representations

Using strings feels
TEDIOUS..

Why?

Not enough methods, maybe?

Objective C [N -

Java |-

Ruby [
Python -40

Haskell 4

Pharo [-

Concatenation

Objective C [@"Hello" stringByAppendingString: @"_world"]
Java "Hello" + "_world"
Ruby "Hello"™ + "_world"

Pharo 'Hello' , '_world'

just to pick on

micallyTypedOb @dd) eerttag@ragramminglanguage

stringByAddingPercentEncodingWithAllowedCharacters:

(yes, this is a single-keyword message)

Extraction

Objective C [@"abcdef" substringWithRange: NSMakeRange(2, 4)]
Java "abcdef".substring(2, 4)
Ruby "abcdef"[2, 4]

Pharo 'abcdef' copyFrom: 3 to: 5

i ? - 'Confident Code

i

Avdi Grimm

)] 0:17

http //www confldentru by com

e N S

-

well, aren't strings just...

objects?

objects

strings

“serialization

well, aren't strings just...

collections?

Feature overlap

, Locating & Extracting =
- what: characters, substrings?
how: index, range, pattern?

Testing & Matching

/ Converting =" |
to other strings

Splitting & Merging ——
’ to other types

separator?

—= Iterating

\ Sy bstituting
byte # codepoint # character

one occurrence, or all?
eagerly or lazily?

More than indices

Ruby's indexing operator (square brackets):

[1ndex]
| -1ndex}
: [from..to]
my_string [from, length]
[/reg(exp)+/]
| 'substring']

SMALLIALK

BEST PRACTICE

l[dioms
that | expected to find in...

KENT BECK

Layers of convenience

trimLeft:right:

/T\ _________

trimLeft: trimRight:

trimBoth: QUIZZI
e T '

. O Riah
trimLeft trimBoth trimRight

_________ T

trim, trimmed what's the dif§erence?

Sentinel values

Sentinel index
Zero?
length + 1

Depends on use-case...
raise exception, return null object, maybe?

Pluggable sentinel case
index0Of:aCharacter startingAt:index ifAbsent: aBlock

Smells

Imperative style
indices everywhere — copyReplaceFrom:to:with:

Ad-hoc behavior
stemAndNumericSuffix — endsWithDigit

Redundancies
findAnySubStr:startingAt: — findDelimiters:startingAt:

Conversion
asSymbol, asInteger, asDate — asLowercase, asHTMLString

Mutability

Let's talk about literals:

hello
'hello world' replaceFrom: 7 to: 11 with: 'pharo'.
A 'hello world'

"HelloWho new hello 'hello pharo'"

Where to go from here?

ldioms more general than strings

how to document & ensure completeness?
lint rules? pragmas? method protocols? —if only they worked like tags...

Improving composability
indices everywhere! imperative style!
iterators, transducers? — rethink collections as well?

Mutability vs sharing
slices / views, ropes

Damien Pollet

A First Analysis of String APIs:
the Case of Pharo

Stéphane Ducasse

RMoD — Inria & Université Lille 1

Abstract

Most programming languages natively provide an abstraction
of character strings. However, it is difficult to assess the de-
sign or the API of a string library. There is no comprehensive
analysis of the needed operations and their different varia-
tions. There are no real guidelines about the different forces
in presence and how they structure the design space of string
manipulation. In this article, we harvest and structure a set of
criteria to describe a string API. We propose an analysis of
the Pharo 4 String library as a first experience on the topic.

damien.pollet@inria.fr

case of strings, however, these characteristics are particularly
hard to reach, due to the following design constraints.

For a single data type, strings tend to have a large API:
in Ruby, the String class provides more than 100 methods,
in Java more than 60, and Python’s str around 40. In Pharo’,
the String class alone understands 319 distinct messages, not
counting inherited methods. While a large API is not al-
ways a problem per se, it shows that strings have many use
cases, from concatenation and printing to search-and-replace,
parsing, natural or domain-specific languages. Unfortunately,
strings are often abused to eschew proper modeling of struc-

