
a first look at 

Strings in Pharo
Damien Pollet — Inria Lille 

International Workshop on Smalltalk Technology — ESUG 2015, Brescia



A First Analysis of String APIs:
the Case of Pharo

Damien Pollet Stéphane Ducasse
RMoD — Inria & Université Lille 1

damien.pollet@inria.fr

Abstract
Most programming languages natively provide an abstraction
of character strings. However, it is difficult to assess the de-
sign or the API of a string library. There is no comprehensive
analysis of the needed operations and their different varia-
tions. There are no real guidelines about the different forces
in presence and how they structure the design space of string
manipulation. In this article, we harvest and structure a set of
criteria to describe a string API. We propose an analysis of
the Pharo 4 String library as a first experience on the topic.

Keywords Strings, API, Library, Design, Style

1. Introduction
While strings are among the basic types available in most
programming languages, we are not aware of design guide-
lines, nor of a systematic, structured analysis of the string
API design space in the literature. Instead, features tend to
accrete through ad-hoc extension mechanisms, without the
desirable coherence. However, the set of characteristics that
good APIs exhibit is generally accepted [4]; a good API:

• is easy to learn and memorize,
• leads to reuseable code,
• is hard to misuse,
• is easy to extend,
• is complete.

To evolve an understandable API, the maintainer should
assess it against these goals. Note that while orthogonality,
regularity and consistency are omitted, they arise from the
ease to learn and extend the existing set of operations. In the

[Copyright notice will appear here once ’preprint’ option is removed.]

case of strings, however, these characteristics are particularly
hard to reach, due to the following design constraints.

For a single data type, strings tend to have a large API:
in Ruby, the String class provides more than 100 methods,
in Java more than 60, and Python’s str around 40. In Pharo1,
the String class alone understands 319 distinct messages, not
counting inherited methods. While a large API is not al-
ways a problem per se, it shows that strings have many use
cases, from concatenation and printing to search-and-replace,
parsing, natural or domain-specific languages. Unfortunately,
strings are often abused to eschew proper modeling of struc-
tured data, resulting in inadequate serialized representations
which encourage a procedural code style2. This problem is
further compounded by overlapping design tensions:

Mutability: Strings as values, or as mutable sequences.

Abstraction: Access high-level contents (words, lines, pat-
terns), as opposed to representation (indices in a sequence
of characters, or even bytes and encodings).

Orthogonality: Combining variations of abstract operations;
for instance, substituting one/several/all occurrences cor-
responding to an index/character/sequence/pattern, in a
case-sensitive/insensitive way.

In previous work, empirical studies focused on detecting
non-obvious usability issues with APIs [12, 13, 11]; for
practical advice on how to design better APIs, these works
cite guideline inventories built from experience [2, 6]. Besides
the examples set by particular implementations in existing
languages like Ruby, Python, or Icon [8], and to the best of
our knowledge, we are not aware of string-specific analyses
of existing APIs or libraries and their structuring principles.

Section 2 shows the problems we face using the current
Pharo 4 string library. In Sections 3 and 4, we identify idioms
and smells among the methods provided by Pharo’s String
class. Section 5 examines the relevant parts of the ANSI
Smalltalk standard. Finally, we survey string API features in
Section 6, before discussing and concluding the paper.

1 Numbers from Pharo 4, but the situation in Pharo 3 is very similar.
2 Much like with Anemic Domain Models, except the string API is complex:
http://www.martinfowler.com/bliki/AnemicDomainModel.html

1 2015/7/2



?Using strings feels 
T E D I O U S… 

Why?



Not enough methods, maybe?
Objective C

Java

Ruby

Python

Haskell

Pharo 319

4

40

100

60

85



Concatenation

Objective C [@"Hello" stringByAppendingString: @"_world"]

Java "Hello" + "_world"

Ruby "Hello" + "_world"

Pharo 'Hello' , '_world'



Objective C…

stringByAddingPercentEncodingWithAllowedCharacters: 

(yes, this is a single-keyword message)

SmalltalkInspiredDynamicallyTypedObjectOrientedProgrammingLanguage
just to pick on



Extraction

Objective C [@"abcdef" substringWithRange: NSMakeRange(2, 4)]

Java "abcdef".substring(2, 4)

Ruby "abcdef"[2, 4]

Pharo 'abcdef' copyFrom: 3 to: 5



http://www.confidentruby.com



?well, aren't strings just… 

objects?



strings
domain 
objects

parsing

serialization



?well, aren't strings just… 

collections?



Feature overlap
Locating & Extracting 

what: characters, substrings? 
how: index, range, pattern? 

Splitting & Merging 
separator? 

Substituting 
one occurrence, or all? 
eagerly or lazily?  

 
Testing & Matching 

Converting 
to other strings 
to other types 

Iterating 
byte ≠ codepoint ≠ character



More than indices
Ruby's indexing operator (square brackets):

my_string

[index]

[from, length]
[from..to]

[/reg(exp)+/]

[-index]

['substring']



Idioms 
that I expected to find in…



Layers of convenience
trimLeft:right:

trimBoth:trimLeft: trimRight:

trimBothtrimLeft trimRight

trim, trimmed

canonical: both sides explicit

one explicit predicate block,
one implicit (same or no trim)

both sides implicit
(trim whitespace)

concise, fluent name

canonical (both sides specified)

one side specified

both sides implicit

concise name

 
 

QUIZZ! 
 

what's the difference?



Sentinel values
Sentinel index 
zero?  
length + 1 

Depends on use-case… 
raise exception, return null object, maybe? 

Pluggable sentinel case 
indexOf:aCharacter startingAt:index ifAbsent: aBlock





Smells
Imperative style 
indices everywhere — copyReplaceFrom:to:with: 

Ad-hoc behavior 
stemAndNumericSuffix — endsWithDigit 

Redundancies 
findAnySubStr:startingAt: — findDelimiters:startingAt: 

Conversion 
asSymbol, asInteger, asDate — asLowercase, asHTMLString



Mutability
Let's talk about literals:



Where to go from here?
Idioms more general than strings 
how to document & ensure completeness? 
lint rules? pragmas? method protocols? —if only they worked like tags… 

Improving composability 
indices everywhere! imperative style!  
iterators, transducers? — rethink collections as well? 

Mutability vs sharing 
slices / views, ropes



A First Analysis of String APIs:
the Case of Pharo

Damien Pollet Stéphane Ducasse
RMoD — Inria & Université Lille 1

damien.pollet@inria.fr

Abstract
Most programming languages natively provide an abstraction
of character strings. However, it is difficult to assess the de-
sign or the API of a string library. There is no comprehensive
analysis of the needed operations and their different varia-
tions. There are no real guidelines about the different forces
in presence and how they structure the design space of string
manipulation. In this article, we harvest and structure a set of
criteria to describe a string API. We propose an analysis of
the Pharo 4 String library as a first experience on the topic.

Keywords Strings, API, Library, Design, Style

1. Introduction
While strings are among the basic types available in most
programming languages, we are not aware of design guide-
lines, nor of a systematic, structured analysis of the string
API design space in the literature. Instead, features tend to
accrete through ad-hoc extension mechanisms, without the
desirable coherence. However, the set of characteristics that
good APIs exhibit is generally accepted [4]; a good API:

• is easy to learn and memorize,
• leads to reuseable code,
• is hard to misuse,
• is easy to extend,
• is complete.

To evolve an understandable API, the maintainer should
assess it against these goals. Note that while orthogonality,
regularity and consistency are omitted, they arise from the
ease to learn and extend the existing set of operations. In the

[Copyright notice will appear here once ’preprint’ option is removed.]

case of strings, however, these characteristics are particularly
hard to reach, due to the following design constraints.

For a single data type, strings tend to have a large API:
in Ruby, the String class provides more than 100 methods,
in Java more than 60, and Python’s str around 40. In Pharo1,
the String class alone understands 319 distinct messages, not
counting inherited methods. While a large API is not al-
ways a problem per se, it shows that strings have many use
cases, from concatenation and printing to search-and-replace,
parsing, natural or domain-specific languages. Unfortunately,
strings are often abused to eschew proper modeling of struc-
tured data, resulting in inadequate serialized representations
which encourage a procedural code style2. This problem is
further compounded by overlapping design tensions:

Mutability: Strings as values, or as mutable sequences.

Abstraction: Access high-level contents (words, lines, pat-
terns), as opposed to representation (indices in a sequence
of characters, or even bytes and encodings).

Orthogonality: Combining variations of abstract operations;
for instance, substituting one/several/all occurrences cor-
responding to an index/character/sequence/pattern, in a
case-sensitive/insensitive way.

In previous work, empirical studies focused on detecting
non-obvious usability issues with APIs [12, 13, 11]; for
practical advice on how to design better APIs, these works
cite guideline inventories built from experience [2, 6]. Besides
the examples set by particular implementations in existing
languages like Ruby, Python, or Icon [8], and to the best of
our knowledge, we are not aware of string-specific analyses
of existing APIs or libraries and their structuring principles.

Section 2 shows the problems we face using the current
Pharo 4 string library. In Sections 3 and 4, we identify idioms
and smells among the methods provided by Pharo’s String
class. Section 5 examines the relevant parts of the ANSI
Smalltalk standard. Finally, we survey string API features in
Section 6, before discussing and concluding the paper.

1 Numbers from Pharo 4, but the situation in Pharo 3 is very similar.
2 Much like with Anemic Domain Models, except the string API is complex:
http://www.martinfowler.com/bliki/AnemicDomainModel.html

1 2015/7/2

READ ME!


