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Motivation

building a dataflow environment (similar to this morning’s talk) for
the web
Amber is very cool, but too slow and complex to interface with
native objects
curious how close one can make Javascript to Smalltalk
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1 // Animal
2 function Animal(name) {
3 this.name = name
4 }
5 Animal.prototype = { // methods
6 canWalk: true,
7 sit: function() {
8 this.canWalk = false
9 alert(this.name + ’ sits down.’)

10 }
11 }
12 // Rabbit
13 function Rabbit(name) {
14 this.name = name
15 }
16 Rabbit.prototype = inherit(Animal.prototype)
17 Rabbit.prototype.jump = function() { // methods
18 this.canWalk = true
19 alert(this.name + ’ jumps!’)
20 }
21 // Usage
22 var rabbit = new Rabbit(’Sniffer’)
23 rabbit.sit() // Sniffer sits.
24 rabbit.jump() // Sniffer jumps!
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Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20



Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20



Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20



Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20



Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20



Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20



Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code.

A return from a Smalltalk block returns from the method in which
the block is statically defined.
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Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
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Semantic Map

A return from a Smalltalk block returns from the method in which
the block is statically defined.
1 foo: n
2 n timesRepeat: [
3 ^n
4 ].
5 ^ -1
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Semantic Map

A return from a Smalltalk block returns from the method in which
the block is statically defined.
1 foo: n
2 n timesRepeat: [
3 ^n
4 ].
5 ^ -1

1 function _foo_(n) {
2 var $exit=Object.create(null);
3 try {
4 n._timesRepeat_(function(){throw n;})
5 } catch ($e) {if ($e===$exit) return $e;throw $e}
6 }
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Smalltalk object is Java object



__proto__for all instances of a class point to same object



__proto__chain is method tables



x.constructor is class



X.prototype.proto.constructor is superclass



classes have own constructor field because no method table



Browser Test Version Min. Version Release Date
Chrome 43.0.2357.65 34 2014-04
Firefox 38.0.1 31 2014-07
Internet-
Explorer

11.0.19 11 2013-10

NodeJS 0.12.2 0.10? 2013
Opera 29.0 13 2013
Safari 8.0.6 7.0? 2013

JS Engines supporting .setPrototypeOf
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Microbenchmarks

run on an idle Apple Macbook Pro, with 2.5GHz Intel i5 processor
IE11 on virtual machine
at least 100,000 operations per “run”
10 warmup runs discarded before 10 captured runs
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amber asBool(v)
constructor (v.constructor===Boolean?v:v.nonbool())
eq (v===true||(v===false?v:v.nonbool()))
instance (v instanceof Boolean?v:v.nonbool())
typeOf (typeof v==="boolean"?v:v.nonbool())
valueOf Boolean.prototype.valueOf.call(v)

Chrome Firefox IE11 NodeJS Opera Safari
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null, undefined and doesNotUnderstand:

1 function $recv(o){
2 if (o == null) return nil;
3 if (typeof o === "object" ||
4 typeof o === "function") {
5 return o.klass != null ? o :
6 globals.JSObjectProxy._on_(o);
7 }
8 return o;
9 }
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1 function MyObject() {
2 this.abc=4;
3 }
4 MyObject.prototype.getter=function getter() {...};
5 MyObject.prototype.setter=function setter(x) {...};

1 getvar: obj for: n
2 | tot |
3 tot := 0.
4 n timesRepeat: [
5 tot := tot + obj abc
6 ].
7 ^ tot

Timings doesNotUnderstand: 13 / 20
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amber $amber(f).foo()
eq2 (f==null?nil:f).foo()
or (f||(f==null?nil:f)).foo()
or2 (f||(f===undefined||f===null?nil:f)).foo()
or3 (f||(f===null||f===undefined?nil:f)).foo()
or4 (f||(f===null?nil:f===undefined?nil:f)).foo()
recv $recv(f).foo()
recvOr $recvOr(f).foo()
orRecv (f||$recv(f)).foo()

Chrome Firefox IE11 NodeJS Opera Safari
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dotget o.ghi
dotput o.ghi=17
idxget o[’ghi’]
idxput o[’ghi’]=17
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always n+m
alwaystes typeof m==="number"?n+m:m.adaptN(n,’+’)
send n.__plus_(m)
sendtest n.__plusT_(m)
test typeof n==="number"?n+m:n.__plus_(m)
testtest typeof n==="number"?typeof m==="number"?n+m:

m.adaptN(n,’+’):n.__plusT_(m)

Chrome Firefox IE11 NodeJS Opera Safari
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Timings Optimizing Numeric Calculations 17 / 20



Conclusions

can make Javascript align well with Smalltalk
can get close to native Javascript performance
some surprising performance characteristics
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Roadmap

information for Amber or PharoJS
currently working on streamlining Amber JS-object handling
number-handling is next priority
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.

Questions?

Thanks to Nicholas Petton, Herbert Vojčík and many others for Amber
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