
Performance from Aligning Smalltalk & Javascript
Classes

Dr. Dave Mason

Department of Computer Science
Ryerson University

1 / 20

Motivation

building a dataflow environment (similar to this morning’s talk) for
the web
Amber is very cool, but too slow and complex to interface with
native objects
curious how close one can make Javascript to Smalltalk

Introduction 2 / 20

Motivation

building a dataflow environment (similar to this morning’s talk) for
the web
Amber is very cool, but too slow and complex to interface with
native objects
curious how close one can make Javascript to Smalltalk

Introduction 2 / 20

Motivation

building a dataflow environment (similar to this morning’s talk) for
the web
Amber is very cool, but too slow and complex to interface with
native objects
curious how close one can make Javascript to Smalltalk

Introduction 2 / 20

1 // Animal
2 function Animal(name) {
3 this.name = name
4 }
5 Animal.prototype = { // methods
6 canWalk: true,
7 sit: function() {
8 this.canWalk = false
9 alert(this.name + ’ sits down.’)

10 }
11 }
12 // Rabbit
13 function Rabbit(name) {
14 this.name = name
15 }
16 Rabbit.prototype = inherit(Animal.prototype)
17 Rabbit.prototype.jump = function() { // methods
18 this.canWalk = true
19 alert(this.name + ’ jumps!’)
20 }
21 // Usage
22 var rabbit = new Rabbit(’Sniffer’)
23 rabbit.sit() // Sniffer sits.
24 rabbit.jump() // Sniffer jumps!

Introduction 3 / 20

nullundefined

Object pro-
totype

__proto__

constructor
fields

Object

__proto__

prototype

fields

Function
prototype

__proto__

constructor
fields

Function
__proto__

prototype

fields

UserCls
prototype

__proto__

constructor
fields

UserCls
__proto__

prototype

fields

a UserCls
__proto__

fields

another UserCls
__proto__

fields

an Object

__proto__

fields

__proto__

constructor
prototype

Introduction JS Inheritance 4 / 20

ProtoObject

methods
fields

ProtoObject
class

methods

Object

methods
fields

Object class

methods
an Object

Behavior
methods

fields

Behavior class
methods

Class
methods

fields

Class class
methods

Metaclass
methods

fields

Metaclass class
methods

UndefinedObject

methods
fields

UndefinedObject
class

methods
nil

UserCls
methods

fields

UserCls class
methods

a UserCls
fields

superclass
class

Introduction Smalltalk Classes 5 / 20

Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20

Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20

Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20

Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20

Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20

Amber

instances of Number are represented by the Javascript number
objects
Boolean, and Date are similarly directly mapped
String, Symbol and Character both use Javascript strings
OrderedCollection is mapped to Javascript arrays
to map to valid Javascript identifiers, message-names are
prepended with _ and have every colon (:) replaced by _
because Javascript identifiers have only a single look-up
mechanism, instance variables are prepended with @, which
means they need to be looked up via the indexing method
(obj[’@foo’]) because obj.@foo is invalid syntax.

Introduction Smalltalk Classes 6 / 20

Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code.

A return from a Smalltalk block returns from the method in which
the block is statically defined.

Introduction Smalltalk Classes 7 / 20

Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code.

A return from a Smalltalk block returns from the method in which
the block is statically defined.

Introduction Smalltalk Classes 7 / 20

Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code.

A return from a Smalltalk block returns from the method in which
the block is statically defined.

Introduction Smalltalk Classes 7 / 20

Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code.

A return from a Smalltalk block returns from the method in which
the block is statically defined.

Introduction Smalltalk Classes 7 / 20

Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code. In Javascript, this refers to the object
from-which the name lookup was done that lead to the current
function executing.

A return from a Smalltalk block returns from the method in which
the block is statically defined.

Introduction Smalltalk Classes 7 / 20

Semantic Map

Everything is an object. null, undefined
doesNotUnderstand: message to the object. undefined →
exception
Boolean only:true and false; otherwise signal a
mustBeBoolean error.
self refers to the current object and super refers to the current
object, but with method resolution starting with the superclass of
the current code.

A return from a Smalltalk block returns from the method in which
the block is statically defined.

Introduction Smalltalk Classes 7 / 20

Semantic Map

A return from a Smalltalk block returns from the method in which
the block is statically defined.
1 foo: n
2 n timesRepeat: [
3 ^n
4].
5 ^ -1

Introduction Smalltalk Classes 7 / 20

Semantic Map

A return from a Smalltalk block returns from the method in which
the block is statically defined.
1 foo: n
2 n timesRepeat: [
3 ^n
4].
5 ^ -1

1 function _foo_(n) {
2 var $exit=Object.create(null);
3 try {
4 n._timesRepeat_(function(){throw n;})
5 } catch ($e) {if ($e===$exit) return $e;throw $e}
6 }

Introduction Smalltalk Classes 7 / 20

ProtoObject

__proto__

prototype

constructor
methods/fields

Class prototype

ProtoObject
prototype

__proto__

constructor
methods

null

ProtoObject
class

__proto__

prototype

constructor

Metaclass
prototype

Metaclass

Object

__proto__

prototype

constructor
methods/fields

Object pro-
totype

__proto__

constructor
methods

Object class

__proto__

prototype

constructor

UserCls
__proto__

prototype

constructor
methods/fields

UserCls
prototype

__proto__

constructor
methods

UserCls class
__proto__

prototype

constructor

a UserCls
__proto__

fields

another UserCls
__proto__

fields

an Object

__proto__

fields

a non-Smalltalk
Object

__proto__

fields

__proto__

constructor
prototype

Introduction Amber-Direct Smalltalk Class Structure 8 / 20

Smalltalk object is Java object

__proto__for all instances of a class point to same object

__proto__chain is method tables

x.constructor is class

X.prototype.proto.constructor is superclass

classes have own constructor field because no method table

Browser Test Version Min. Version Release Date
Chrome 43.0.2357.65 34 2014-04
Firefox 38.0.1 31 2014-07
Internet-
Explorer

11.0.19 11 2013-10

NodeJS 0.12.2 0.10? 2013
Opera 29.0 13 2013
Safari 8.0.6 7.0? 2013

JS Engines supporting .setPrototypeOf

Introduction 9 / 20

Microbenchmarks

run on an idle Apple Macbook Pro, with 2.5GHz Intel i5 processor
IE11 on virtual machine
at least 100,000 operations per “run”
10 warmup runs discarded before 10 captured runs

Timings 10 / 20

amber asBool(v)
constructor (v.constructor===Boolean?v:v.nonbool())
eq (v===true||(v===false?v:v.nonbool()))
instance (v instanceof Boolean?v:v.nonbool())
typeOf (typeof v==="boolean"?v:v.nonbool())
valueOf Boolean.prototype.valueOf.call(v)

Chrome Firefox IE11 NodeJS Opera Safari

100

200

sc
al

ed
tim

in
gs

amber constructor eq instanceof typeof valueOf

Timings Booleans 11 / 20

null, undefined and doesNotUnderstand:

1 function $recv(o){
2 if (o == null) return nil;
3 if (typeof o === "object" ||
4 typeof o === "function") {
5 return o.klass != null ? o :
6 globals.JSObjectProxy._on_(o);
7 }
8 return o;
9 }

Timings 12 / 20

1 function MyObject() {
2 this.abc=4;
3 }
4 MyObject.prototype.getter=function getter() {...};
5 MyObject.prototype.setter=function setter(x) {...};

1 getvar: obj for: n
2 | tot |
3 tot := 0.
4 n timesRepeat: [
5 tot := tot + obj abc
6].
7 ^ tot

Timings doesNotUnderstand: 13 / 20

ChromeFirefox IE11 NodeJS Opera Safari
0

100

200

sc
al

ed
tim

in
gs

getVard getVarp getterd getterp putVard putVarp setterd setterp

Timings doesNotUnderstand: 14 / 20

amber $amber(f).foo()
eq2 (f==null?nil:f).foo()
or (f||(f==null?nil:f)).foo()
or2 (f||(f===undefined||f===null?nil:f)).foo()
or3 (f||(f===null||f===undefined?nil:f)).foo()
or4 (f||(f===null?nil:f===undefined?nil:f)).foo()
recv $recv(f).foo()
recvOr $recvOr(f).foo()
orRecv (f||$recv(f)).foo()

Chrome Firefox IE11 NodeJS Opera Safari

100

150

sc
al

ed
tim

in
gs

amber eq2 or or2 orRecv recv recvOr

Timings null, undefined 15 / 20

dotget o.ghi
dotput o.ghi=17
idxget o[’ghi’]
idxput o[’ghi’]=17

Chrome Firefox IE11 NodeJS Opera Safari

100

200

sc
al

ed
tim

in
gs

dotget dotput idxget idxput

Timings Access to instance variables 16 / 20

always n+m
alwaystes typeof m==="number"?n+m:m.adaptN(n,’+’)
send n.__plus_(m)
sendtest n.__plusT_(m)
test typeof n==="number"?n+m:n.__plus_(m)
testtest typeof n==="number"?typeof m==="number"?n+m:

m.adaptN(n,’+’):n.__plusT_(m)

Chrome Firefox IE11 NodeJS Opera Safari

0

100

200

300

sc
al

ed
tim

in
gs

always alwaystest send sendtest test testtest

Timings Optimizing Numeric Calculations 17 / 20

Conclusions

can make Javascript align well with Smalltalk
can get close to native Javascript performance
some surprising performance characteristics

Conclusions 18 / 20

Roadmap

information for Amber or PharoJS
currently working on streamlining Amber JS-object handling
number-handling is next priority

Conclusions 19 / 20

.

Questions?

Thanks to Nicholas Petton, Herbert Vojčík and many others for Amber

Conclusions 20 / 20

	Introduction
	JS Inheritance
	Smalltalk Classes
	Amber-Direct Smalltalk Class Structure

	Timings
	Booleans
	doesNotUnderstand:
	null, undefined
	Access to instance variables
	Optimizing Numeric Calculations

	Conclusions

