
Performance from Aligning Smalltalk & Javascript Classes

Dave Mason
Ryerson University
350 Victoria Street

Toronto, ON, Canada M5B 2K7
dmason@ryerson.ca

ABSTRACT
Amber is a wonderful Smalltalk programming environment
that runs on top of Javascript, including a browser-based
IDE and compiler, as well as command-line support. The
only challenge is that execution performance can be 1–2 or-
ders of magnitude slower than native Javascript code. Amber-
Direct is a series of modest changes to the compiler and some
infrastructure classes and methods that bring most gener-
ated programs to within a factor of two of native Javascript.

The challenge we faced was maintaining a seamless integra-
tion into existing Javascript classes while maximizing fidelity
to Smalltalk execution semantics.

1. INTRODUCTION
Amber[9] Smalltalk is a programming environment created
to support programming on the web (or on servers using
NodeJS). It provides a Smalltalk IDE, and supports pro-
gramming in Smalltalk, while automatically compiling the
Smalltalk code to Javascript to utilize the native Javascript
engine provided by most modern browsers.

In development mode, Amber creates a context within each
function to facilitate traditional Smalltalk error reporting.
This context-creation can be turned off for production mode
to minimize the overhead.

Amber is also specifically designed to interoperate with nor-
mal Javascript as seamlessly as possible.

Despite these goals and optimizations, Amber unfortunately
suffers from an order-of-magnitude (or more) slowdown rel-
ative to straightforward Javascript code, which can limit its
usability for some applications.

We took a step back to look at how much performance could
be recaptured and if the interoperation with Javascript could
be enhanced

ProtoObject

methods

fields

ProtoObject class

methods

Object

methods

fields

Object class

methods
an Object

Behavior

methods

fields

Behavior class

methods

Class

methods

fields

Class class

methods

Metaclass

methods

fields

Metaclass class

methods

UndefinedObject

methods

fields

UndefinedObject
class

methods

nil

UserCls

methods

fields

UserCls class

methods

a UserCls

fields

superclass

class

Figure 1: Classic Smalltalk Class Structure

2. EXECUTION MODEL
2.1 Smalltalk
Since the 1980s, Smalltalk[4] has had the basic structure
of required classes as shown in figure 1. Ultimately, every
standard object inherits from Object. In fact, most envi-
ronments include a ProtoObject class that resides above
Object and handles objects that are outside the standard
environment, such as objects that have been swapped out of
memory.

Smalltalk has a class-based inheritance model. Every object
is an instance of a class – even classes. The methods for
each object are stored in a method table associated with
the class. Since even classes are instances of a class, their

methods are also in the method table associated with their
meta-class.

Metaclasses are themselves instances of a class called Metaclass
which ultimately inherits from Object, like every other
class.

2.2 Javascript
Unlike Smalltalk, Javascript has a prototype-based inheri-
tance model, essentially a simplified version of the model
used by Self[12].

Objects are traditionally created with the new operator ap-
plied to a function. The result is a new object that has a field
called __proto__ that is a link to the prototype field of
the function and a field called constructor that is a link
to the function. If a referenced field is not in the object, the
__proto__ chain is followed to find it. See figure 2.

nullundefined

Object prototype

proto

constructor

fields

Object

proto

prototype

fields

Function
prototype

proto

constructor

fields

Function

proto

prototype

fields

UserCls prototype

proto

constructor

fields

UserCls

proto

prototype

fields

a UserCls

proto

fields

another UserCls

proto

fields

an Object

proto

fields

__proto__

constructor

prototype

Figure 2: Javascript Prototype Structure

Here is an example from a javascript tutorial[7].

1 // Animal
2 function Animal(name) {
3 this.name = name
4 }
5 Animal.prototype = { // methods
6 canWalk: true,
7 sit: function() {
8 this.canWalk = false
9 alert(this.name + ’ sits down.’)

10 }
11 }
12 // Rabbit
13 function Rabbit(name) {
14 this.name = name
15 }
16 Rabbit.prototype = inherit(Animal.prototype)
17 Rabbit.prototype.jump = function() { // methods
18 this.canWalk = true
19 alert(this.name + ’ jumps!’)
20 }
21 // Usage
22 var rabbit = new Rabbit(’Sniffer’)
23 rabbit.sit() // Sniffer sits.
24 rabbit.jump() // Sniffer jumps!

As you can see, the prototype object acts in a similar role
to the Smalltalk method table.

The new operator can only be applied to functions, so it is
difficult to map the classical Javascript function/prototype-
/object model to the Smalltalk class model – despite being
tantalizingly close – in particular, there are cycles in the
Smalltalk class graph that cannot be replicated.

2.3 Amber
Amber appears to have as a goal compatability with the
largest possible set of browsers. This led them to particular
choices:

• instances of Number are represented by the Javascript
number objects;

• Boolean, and Date are similarly directly mapped;

• String and Character both use Javascript strings;

• OrderedCollection is mapped to Javascript arrays;

• to avoid name clashes, and map to valid Javascript
identifiers, message-names are prepended with _ and
have every colon (:) replaced by _ ;

• to avoid name clashes, and because Javascript iden-
tifiers have only a single look-up mechanism, instance
variables are prepended with @, which means they need
to be looked up via the indexing method (obj[’@foo’])
because obj.@foo is invalid syntax.

There are several properties of Smalltalk semantics that are
challenging to emulate in Javascript.

1. Everything is an object. This is almost true in Javascript,
too, but there are 2 values: null and undefined that
have no fields. They serve roles equivalent to Smalltalk
nil but have to be converted to the nil object in or-
der to send messages.

2. Messages sent to an object for which the object does
not have a method send a special doesNotUnderstand:
message to the object, which the object can implement
and return, for example, a default value. In Javascript,
a reference to a field that is not defined returns a value
of undefined which raises an exception if it is applied
as a function.

3. Boolean only includes true and false; otherwise sig-
nal a mustBeBoolean error. In Javascript there are
several additional values that are treated as false
(undefined, null, NaN, 0, and ""). Everything else
evaluates to true.

4. self refers to the current object and super refers to
the current object, but with method resolution starting
with the superclass of the current code. In Javascript,
this refers to the object from-which the name lookup
was done that lead to the current function executing.

5. A return from a Smalltalk block returns from the method
in which the block is statically defined.

Amber has solutions to all of these problems, but in most
cases they are suboptimal – in part because of the choice to
support legacy Javascript implementations. In section 2.4
we will look at better solutions.

Amber has a significant amount of code implemented in
Javascript, both in the support/ environment and also in
the Kernel classes. This appears to be largely because of
decisions about the structure of the class hierarchy and the
handling of interfaces with the world of Javascript classes.
Before the ECMAScript-6 (ES6) draft[2] was created, the
prototype chain for Javascript objects (now called __proto__)
was not officially programmatically available, and Internet
Explorer versions before 11 do not fully support it. This
means that it was impossible to interject, say, a class be-
tween Number and Object to represent Smalltalk“Object”.
This pretty-much dictates Amber’s choice to use mixin meth-
ods and to use JSProxyObject to map non-smalltalk ob-
jects, as well as to handle doesNotUnderstand.

2.4 Amber-Direct
For Amber-Direct, we decided that we would abandon legacy
Javascript/ECMAScript engines and try to get performance
close to that of native Javascript. There are several decisions
that bear upon this.

Class Hierarchy
With the arrival of ES6, the prototype chain becomes open
to manipulation. We made the following decisions.

• Emulating the Smalltalk hierarchy with very good fi-
delity was more important than legacy browser sup-
port. Close emulation would allow more fine-grained
control over where code ended up.

• The Smalltalk ProtoObject class will be the Javascript
Object “class”. Every non-Amber object will inherit
from that class, so any methods inserted into ProtoOb-
ject will be available to Javascript objects as well as
Smalltalk objects.

• Methods like isNil are put in ProtoObject so that in-
teroperation between Javascript and Smalltalk objects
will be more seamless.

• Rather than create the JSProxyObject class and wrap
Javascript objects in that class, we directly interface
with the Javascript objects.

• The support for direct handling of Javascript object
value setters and getters and method calls is also in
ProtoObject.

Object, Class, Method table relationship
As shown in figure 3, our implementation of Smalltalk in
Javascript is as follows:

1. The Smalltalk object is represented by a Javascript
object. The instance variables are fields in the object.

2. The __proto__ for the object points to an object that
is the method table for the class. The __proto__ field
of all instances of a class point to the same object.

3. The __proto__ field for the method table points to
the method table for the superclass.

4. The method table contains a field, constructor, that
points to the class object.

5. The class object contains a field, prototype, that
points to the method table for the class.

6. The class of an object, x, is accessed as x.constructor.

7. The superclass of a class object, X, is accessed via the
reference X.prototype.__proto__.constructor.
The only exception is if X.prototype.__proto__ is
null, in which case the superclass is nil.

8. A class object also contains a field, constructor that
points to the Metaclass class object. Ordinary ob-
jects don’t have this value, because their constructor
reference is in the __proto__.

9. Class methods, that would be in the metaclass method
table, are directly in the class object because there is
only one instance of each class object, so there would
be no advantage to creating a separate method table.

3. METHODOLOGY
We looked at key operations in the Javascript produced by
Amber and created micro-benchmarks to explore alternate
code generation choices.

For each micro-benchmark, we have a loop of at least 100,000
iterations for each of the code options. This is referred to
as a run. The plots (e.g. figure 5) reflect 10 runs of each
micro-benchmark. The diamonds represent the average of
the 10 runs. The box runs from the 1st quartile to the 3rd

quartile and the whiskers show extremal points withing 1.5
times that range of the median. Outlier runs show as ×
symbols. For most engines and micro-benchmarks, the runs
are very repeatable, with the occasional outlier probably
representing a major garbage collection.

We are assuming the ability to manipulate the __proto__
chain, either by assignment to __proto__ or by the func-
tion setPrototypeOf(). setPrototypeOf() is part of
ES6, but some engines have supported assignment to __proto__
for some time. Because of this, the only version of Internet
Explorer suitable was IE11. IE11 is the default browser on
Windows 8.1, but initial experiments exhibited extremely
poor performance. Then we noticed that performance im-
proved with repeated execution of the same code (from 2x
to 20x speedup), so for each micro-benchmark we execute
10 “warmup” runs before we start calculating statistics –
on all engines. Table 1 shows the minimum version of the
tested browsers that can run our generated code and the
date that version became available. Note that our definition
of “Modern” browsers actually refers to browsers that have
been available for over a year.

These experiments were not intended to be comparisons of
browser performance, but rather to determine which of a va-
riety of possible translations of a particular set of Smalltalk
semantics runs the fastest on a particular browser. There-
fore the values are scaled so that 100 is the average of the
medians of the experiments for each code choice, for each

ProtoObject

proto

prototype

constructor

methods/fields

Class prototype

ProtoObject
prototype

proto

constructor

methods

null

ProtoObject class

proto

prototype

constructor

Metaclass
prototype

Metaclass

Object

proto

prototype

constructor

methods/fields

Object prototype

proto

constructor

methods

Object class

proto

prototype

constructor

UserCls

proto

prototype

constructor

methods/fields

UserCls prototype

proto

constructor

methods

UserCls class

proto

prototype

constructor

a UserCls

proto

fields

another UserCls

proto

fields

an Object

proto

fields

a non-Smalltalk
Object

proto

fields

__proto__

constructor

prototype

Figure 3: Amber-Direct Smalltalk Class Structure

Browser Test Version Min. Version[5] Release Date
Chrome 43.0.2357.65 34 2014-04
Firefox 38.0.1 31 2014-07
Internet-
Explorer

11.0.19 11 2013-10

NodeJS 0.12.2 0.10? 2013
Opera 29.0 13 2013
Safari 8.0.6 7.0? 2013

Table 1: Browser/Engine Versions

browser. Hence a low whisker diagram doesn’t mean that
that engine was faster, merely that that code choice was
faster than the other code choices for that engine.

All the experiments were run on an otherwise idle Apple
Macbook Pro, with 2.5GHz Intel i5 processor. IE11 was run
via a virtual machine. Because we are measuring relative
performance for various code choices, rather than raw per-
formance, any residual variability should not bear on the
results.

4. RESULTS
In this section we discuss each of the four areas where we
have made significant changes to the Amber compiler and/or
runtime environment.

4.1 Booleans
Whenever a boolean test is being done non-booleans need
to be treated as errors. One might expect the instanceof
operator to be the fastest – and figure 4 shows it is (or close)
for Firefox, IE11 and Safari, but it is the slowest by far for
Chrome and NodeJS. Using the constructor field is the

fastest for IE11, but the worst by far for Safari. amber is the
solution used by Amber, which is a function that performs
the typeof test. Inlining typeof is the best performance
(or very close) for all the engines, so is the one we choose to
use.

Additionally, where the value is being used in an ifTrue:IfFalse:
the code can be converted to:

1 if (v===true) {...true block...}
2 else if(v===false) {...false block...}
3 else v.nonbool();

4.2 null, undefined and doesNotUnderstand:
Amber handles the nil-equivalent values and native Javascript
objects by calling a function called $recv on every object
before calling a function on that object.

1 function $recv(o){
2 if (o == null) return nil;
3 if (typeof o === "object" ||
4 typeof o === "function") {
5 return o.klass != null ? o :
6 globals.JSObjectProxy._on_(o);
7 }
8 return o;
9 }

This function does two things.

1. Wrapping every non-Smalltalk object in a JSProxyObject.
The JSProxyObject class has implementations for
all possible method names that it then trampolines to
access the fields or functions in the object. We have
moved this to ProxyObject, so that any Javascript
object gets the support directly. When one of the un-

amber asBool(v)
constructor (v.constructor===Boolean?v:v.nonbool())
eq (v===true||(v===false?v:v.nonbool()))
instance (v instanceof Boolean?v:v.nonbool())
typeOf (typeof v==="boolean"?v:v.nonbool())
valueOf Boolean.prototype.valueOf.call(v)

Chrome Firefox IE11 NodeJS Opera Safari

50

100

150

200

250

sc
a
le

d
ti

m
in

g
s

amber constructor eq instanceof typeof valueOf

Figure 4: Recognizing Boolean values

known functions is called, it looks through the pro-
totype chain for the object to find where the field or
function is located, then adds a new function into the
same (prototype) object so that the next call will find
it directly. For example, if there was an object con-
structor like:

1 function MyObject() {
2 this.abc=4;
3 }
4 MyObject.prototype.getter=function getter() {...};
5 MyObject.prototype.setter=function setter(x) {...};

Then a call obj abc (where obj is the result of a
Javascript obj=new MyObject() would translate into
obj._abc() which would dispatch to the _abc method
in ProtoObject, which would insert into obj (because
that’s where abc was found) the function function(){
return this[’abc’]} with the name _abc, and
then call the function. The next time a call is made,
it will find the method, _abc, directly in obj with no
overhead. One of the benchmark calls looks like:

1 getvar: obj for: n
2 | tot |
3 tot := 0.
4 n timesRepeat: [
5 tot := tot + obj abc
6].
7 ^ tot

On the other hand, when a call like obj._getter()
executes, it would again dispatch to the _getter method
in ProtoObject, but in this case it would insert _getter
in MyObject.prototype as an alias to getter so that

dotget o.ghi
dotput o.ghi=17
idxget o[’ghi’]
idxput o[’ghi’]=17

Chrome Firefox IE11 NodeJS Opera Safari

50

100

150

200

sc
a
le

d
ti

m
in

g
s

dotget dotput idxget idxput

Figure 7: Access to instance variables

subsequent references like other getter to that method
of other instances of ProtoObject would directly exe-
cute that code without any intervention from the _getter
method in ProtoObject.

As can be seen from figure 5, the direct calls have es-
sentially no cost, whereas the calls via JSProxyObject
have significant overhead.

2. Returns nil where necessary. Because the first reason
has been eliminated, Table 6 shows the times for var-
ious attempts to short-circuit this function call, and
the code for the various approaches.

The actual function used by Amber is the slowest,
partly because it has to check for non-Smalltalk ob-
jects to wrap them in JSProxyObjects. The best
code is not completely clear, so we are currently using
a simplified version of the $recv code which Amber
uses – with that extra check removed. Additionally,
it appears that there are numerous situations when
we know that a value is not undefined (for example
self) where we can bypass the call.

4.3 Instance Variables
As described in §2.3, the Amber developers decided to en-
code instance variables as fields prefixed with “@”. Because
the resulting name is not a valid Javascript name, accessing
the variables has to use the indexing syntax rather than the
dot syntax.

In figure 7 it is evident that there is essentially no difference
for most of the engines. However, for Safari, there is a very
significant difference. Therefore, we have changed the prefix
of instance variables to $_.

Chrome Firefox IE11 NodeJS Opera Safari

0

50

100

150

200

250

sc
a
le

d
ti

m
in

g
s

getVard getVarp getterd getterp putVard putVarp setterd setterp

Figure 5: Direct versus proxy access to object fields

amber $amber(f).foo()
eq2 (f==null?nil:f).foo()
or (f||(f==null?nil:f)).foo()
or2 (f||(f===undefined||f===null?nil:f)).foo()
or3 (f||(f===null||f===undefined?nil:f)).foo()
or4 (f||(f===null?nil:f===undefined?nil:f)).foo()
recv $recv(f).foo()
recvOr $recvOr(f).foo()
orRecv (f||$recv(f)).foo()

Chrome Firefox IE11 NodeJS Opera Safari

60

80

100

120

140

160

180

sc
a
le

d
ti

m
in

g
s

amber eq2 or or2 orRecv recv recvOr

Figure 6: Recognizing nil values

always n+m
alwaystes typeof m==="number"?n+m:m.adaptN(n,’+’)
send n.__plus_(m)
sendtest n.__plusT_(m)
test typeof n==="number"?n+m:n.__plus_(m)
testtest typeof n==="number"?typeof m==="number"?n+m:

m.adaptN(n,’+’):n.__plusT_(m)

Chrome Firefox IE11 NodeJS Opera Safari

0

100

200

300

sc
a
le

d
ti

m
in

g
s

always alwaystest send sendtest test testtest

Figure 8: Optimizing Numeric Calculations

4.4 Numbers
The largest amount of code in most programs relates to num-
bers.

Amber sends messages (calls functions) for every numeric
calculation. This is very expensive, and contributes to the
amount of code that is written in native Javascript. When
we recognize that values are numbers (similar to the Boolean
test) we can replace a function call with a native Javascript
operation. This can often be determined statically, either
because the value is a numeric literal or because it is a ref-
erence to self in a method of class Number.

In figure 8 for all engines, the advantages of not calling the
function are obvious. Amber does the send option. The
“test” version of each pair adds a test to verify if the right-
hand side is a number, and if not, Smalltalk semantics re-
quires a call to adaptToNumber:andSend:.

5. AMBER AND CROSS-COMPILATION
Traditionally cross-compilation is only a moderately com-
plex task.

One starts with a working compiler that runs on architec-
ture X, and writes a revision of the compiler that runs on
architecture X and generates code for architecture Y. Then
compile the compiler itself with that revision and produce a
compiler that runs on architecture Y. And the task is com-
plete.

Amber was designed as an interactive compiler that modifies
the methods in the running image as they are compiled. If

the new architecture (or runtime environment) is incompat-
ible with the current image the standard cross-compilation
model fails – subtly or spectacularly.

For this project, an extra step had to be added to the cross-
compilation process.

1. Revise the compiler to add a switch to prevent loading
the code as it is compiled. Make note of the pack-
ages, classes, and methods compiled. Output only the
components that were compiled, otherwise removing
methods from existing classes fails. This stage has to
remain compatible with the existing compiler and en-
vironment.

2. Revise that compiler to generate code for the new ar-
chitecture. This still runs on the old architecture but
doesn’t update the running code.

3. Revise the support code for the new architecture and
compile the compiler for the new environment.

6. RELATED WORK
There are numerous compilers targeting Javascript[8], and
numerous Smalltalk compilers[10, 11, 3, 1, 13]. Obviously
the most relevant previous work is the Amber[9] Smalltalk
system upon which this was based.

7. CONCLUSIONS
This compiler is far from complete, but we are already seeing
more efficient code being generated.

More importantly, the structure is in place and we have
significant improvements envisaged.

Once it is more stable, we will suggest that Amber integrate
portions of the code, though the degree of integration may
be somewhat limited until the preponderance of browsers
support the required features.

8. ACKNOWLEDGMENTS
Thanks to Nicholas Petton, Herbert Vojč́ık, and numerous
others who are working on the Amber environment. This
work would not be possible without building on their foun-
dations.

References
[1] Cincom VisualWorks Smalltalk. url: http://www.

cincomsmalltalk.com/main/products/visualworks/.

[2] ECMAScript 6 Rev 38 Final Draft. Apr. 2015. url:
http://wiki.ecmascript.org/doku.php?id=
harmony:specification_drafts.

[3] Gemstone/S. url: http://gemtalksystems.com.

[4] Adele Goldberg and David Robson. Smalltalk-80: The
Language and its Implementation. Don Mills, Ontario:
Addison-Wesley, 1983. isbn: 0-201-11371-6.

[5] Kangax Browser Compatibility. url: https://kangax.
github.io/compat-table/es6/.

[6] Ilya Kantor. Prototypal inheritance. 2011. url: http:
//javascript.info/tutorial/inheritance.

[7] Ilya Kantor. Pseudo-classical pattern. 2011. url: http:
//javascript.info/tutorial/pseudo-classical-
pattern.

[8] List of languages that compile to JS. url: https://
github.com/jashkenas/coffeescript/wiki/
List-of-languages-that-compile-to-JS.

[9] Nicholas Petton, Herbert Vojč́ık, et al. Amber Smalltalk.
url: http://amber-lang.net.

[10] Pharo Smalltalk. url: http://pharo.org.

[11] Squeak Smalltalk. url: http://www.squeak.org.

[12] David Ungar and Randall B. Smith. “Self: The power
of simplicity”. In: SIGPLAN Not. 22.12 (Dec. 1987),
pp. 227–242. issn: 0362-1340. doi: 10.1145/38807.
38828. url: http://doi.acm.org/10.1145/
38807.38828.

[13] VisualAge Smalltalk. url: http://www.instantiations.
com/products/vasmalltalk/.

http://www.cincomsmalltalk.com/main/products/visualworks/
http://www.cincomsmalltalk.com/main/products/visualworks/
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts
http://gemtalksystems.com
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
http://javascript.info/tutorial/inheritance
http://javascript.info/tutorial/inheritance
http://javascript.info/tutorial/pseudo-classical-pattern
http://javascript.info/tutorial/pseudo-classical-pattern
http://javascript.info/tutorial/pseudo-classical-pattern
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
http://amber-lang.net
http://pharo.org
http://www.squeak.org
http://dx.doi.org/10.1145/38807.38828
http://dx.doi.org/10.1145/38807.38828
http://doi.acm.org/10.1145/38807.38828
http://doi.acm.org/10.1145/38807.38828
http://www.instantiations.com/products/vasmalltalk/
http://www.instantiations.com/products/vasmalltalk/

	Introduction
	Execution Model
	Smalltalk
	Javascript
	Amber
	Amber-Direct

	Methodology
	Results
	Booleans
	null, undefined and doesNotUnderstand:
	Instance Variables
	Numbers

	Amber and Cross-Compilation
	Related Work
	Conclusions
	Acknowledgments

