

Martin is getting the
projector
to work
with his
laptop.

Beyond

Concurrency,
E,

and Smalltalk

Martin McClure

Threads

A unicorn
at a
birthday party

A unicorn
at a
birthday party

(Thanks, Nancy!)

Beyond
Threads

Threads

Sequential
Model

Sequential
Model
•One
•Thing
•After
•Another

Sequential
Model
•One
•Thing
•After
•Another
•(branching, call/return)

Sequential
Model
•One
•Thing
•At
•A
•Time

Shared-State
Thread Model
•Many threads
•Each is sequential
•State is shared

Thread
Advantages
•>1 thing “at once”
•Program sequentially

Thread
Drawbacks
•Program sequentially
•Execute randomly

Thread
Drawbacks
•Race conditions

Thread
Drawbacks
•Race conditions
•Deadlock

Thread
Drawbacks
•Must understand entire
system. Impossible.

Threads
are

Bad

Why Threads Are A Bad Idea September 28, 1995, slide <number>

What's Wrong With Threads?

Too hard for most programmers to use.

Even for experts, development is painful.

casual wizardsall programmers

Visual Basic programmers
C programmers
C++ programmers

Threads programmers

“The Problem
with Threads”

Edward A. Lee

Beyond
Threads

Beyond
Threads

E

These ideas are
not new.

What's
E

all about?

When separately written
programs are composed so that
they may cooperate, they may
instead destructively interfere in
unanticipated ways. These
hazards limit the scale and
functionality of the software
systems we can successfully
compose.

Great progress on the
composition problem has been
made within the object
paradigm, chiefly in the context
of sequential, single-machine
programming among
benign components.

We … extend this success to
support robust composition of
concurrent and potentially
malicious components
distributed over potentially
malicious machines.

E
•Objects
•Composition
•Concurrency
•Distribution
•Security

Vat

Two kinds of send

•immediate
•eventual

Vat

Two kinds of
object reference

Object Reference

•Assign to a variable
•Send a message

An Object
Reference is a

channel through
which you can send

a message.

Two kinds of
object reference
•near
•eventual

Two kinds of
object reference
•near
• immediate send
• eventual send

•eventual
• eventual send only

Message
•receiver
•selector
•arguments

Arguments
•Near references in the
sending vat become
eventual references when
the message is received in
another vat.

Data Objects
•Transitively immutable
•Passed by copying
•Receiver sees a near
reference in its vat

(breathe)

Immediate send
waits for a response

before returning

Eventual send
returns immediately

Eventual send
returns immediately

But what does it
return?

Promise
•Eventual reference to
the result

Promise
•Resolver
• One for each promise
• Sent with message
• Tells promise what

object it represents

Promise
•Messages sent to promise
• Before resolved
• Queued

• When resolved
• Queued messages sent

• Once resolved
• Equivalent to resolution

Latency

workQueue removeFirst
 process = 'done'.

Pipelining

workQueue removeFirst
 process = 'done'.

When Things
go

Wrong

Exceptions
•Promise resolves to
broken reference
•Any message sent to the
promise signals the
exception in the sending
vat

Odds & Ends
•When-Catch expression
• Multi-way join

•Guaranteed order of
delivery

Is all this a
good idea?

Advantages
•No race conditions
•No deadlock
•Fairly straightforward
model
•Enables distribution
•More easily enables
multi-core use

Drawbacks
•Datalock
•Multi-vat recursive
algorithms require
special handling

Is all this a
good idea?

What would
it take?

Changes
•Syntax for eventual
send
•Better support for data
objects

#= == #==

E
erights.org

Beyond

Concurrency,
E,

and Smalltalk

Martin McClure

Threads

