@

&

STICC

N\

ueh

4}_}., —
&
ENSTA

Bretagne

ClockSystem: Embedding Time

ENSTA Bretagne, Brest, France

in Smalltalk

Ciprian Teodorov

Overview

Context & Motivations

Logical Time Formalism

ClockSystem: Logical Time in Smalltalk
Example

Conclusion & Perspectives

Context & Motivation

Parallel platforms available (multi-core, GPU, www)
More and more Parallel & Distributed apps

General-purpose languages have constructs for
expressing concurrency and exploiting parallelism

Difficulties for reasoning about concurrency:
— Low-level, implementation specific
— Lack of formal semantics

Logical Time and Synchronous
languages

* logical Time (Leslie Lamport ‘78)
— Abstracts “physical” time as a partial order of events
— Multi-form, the event need not be time related

* Enables to describe, manipulate and analyze

interactions, communications, synchronizations
between processes.

e Used in hardware, embedded and distributed
systems

— Signal, Lustre, Esterel, CCSL

Clock Constraint Specification
Language (CCSL)

e Part of the OMG Marte UML2 profile
* Formally expresses timed behaviors

— Relations: precedence, coincidence, exclusion ...

— Expressions: intersection, union, filtering ...

* Usages:
— specifying concurrency semantics
— expressing timing requirements

CCSL primitives: Examples

T T D

filtering := always ¥ 001(0110)¥
always ------------ I-- -
filtering | -- ;

ClockSystem

* Logical Time embedded in Smalltalk
 Automata interpretation of CCSL primitives

clocks [*] clocks [*] Transition

ClockSystem [@—— Clock ———Cfource: Number
target : Number

actionBlock : Block

clocks [*] N
transitions|[1..n]
relations|[*]

constants [*] Q
<>

_ _ automaton
Object | variables [*] ClockRelation e Automaton

relDSL for primitives:
StrictPrecedence (<)

{a b}
{a} {a} _______ >
— >
0 {b} 1 {b} 2 00

KernelLibrary >>#strictPrecedence
~ [:s :a :b |
“unbounded strict precedence”
s =0
ifTrue: [{
s => (s + 1) when: {a}
ifFalse: [{
s => s when: {a. b}.
s => (s + 1) when: {a}
s = (s - 1) when: {b}

t]

31

Constraints instantiation

Clock>>#precedes: anotherClock
self system

relation: #strictPrecedence
clocks: { self. anotherClock }

Clock >>#< anotherClock
self precedes: anotherClock
Clock >>#> anotherClock
anotherClock precedes: self
Clock >>#follows: anotherClock
self > anotherClock

Synchronous Data Flow (SDF)
Example

SDF Constraints: CCSL

def edge(clock source, clock target,
int out, int initialTokens , int in) =
clock read
clock write
source = (write w.(1.0°4t" 1))
A write < read $ initialTokens

A (read w.(0°*1.1)¥) < target

SDF Constraints: ClockSystem

edgeFrom: source to: target
outRate: out 1nitial: initialTokens
't ow
r := self localClock: #read.
w := self localClock: #write.

inRate: 1n

source===(w period: ({1}, (0 for: (out-1)))).
w < (r waitFor: 1nitialTokens).

(r period: (0 for: (in-1)), {1}) < target

Simulation

{A.C}

(A) I P L

o> —> _—_ {B} {A.C} >

(a) Periodic Trace Automaton

AN EHE
B H B
C HE

(b) Periodic Waveform
Al Tl I N IE E e

B | | | | | | __ B

C I B I I I e
(c) Trace interpretation (21 steps)

Exhaustive Execution Analysis

Passive Acoustic Monitoring Application

Nodes: 1020
Edges: 4145

Conclusion

Embedding of Logical Time in Pharo Smalltalk
Extensible automaton-based formal kernel

Flexible DSL through message-synonyms

Usage Scenarios
— Trace interpretation

— model-checking
— DSE
— testing & monitoring

Future Work

testing & monitoring concurrent Smalltalk apps
by intercepting reflectively generated events
(like var access, method activations, etc)

e Support for dense-time representation
* Mechanisms for dynamically evolving systems

e Study the connection between ClockSystem

constraints and state-space decomposition in
model-checking context

