
Tracking dependencies
between code changes
Lucas Godoy

Scenario

It’s common for software developers to work in
more than one problem at the same time

For example, to fix a critical bug in the middle of a
big refactor

Good practices recommend to perform atomic
commits

Define atomic

Ideally, an atomic commit should only affect a
single aspect of the system

This improves understandability, makes easier bug
identification and requires less effort to rollback

But the atomic commit policy is not enforced by
tools

The problem

The developer has to cherry-pick changes
manually (by using git-add -i)

But with traditional VCS, changes are scattered in
a large amount of text

And detailed information about the sequence of
changes is lost

Objective

To aid the developer in the cherry-picking process

The resulting change-set should be atomic

Limitations: not fully automatic, not 100%
accurate in all cases

What we would like

Changes modeled as objects and recorded as
they happen

To track dependencies between those objects to
define the atomic change set we’re going to
commit

And dependencies should also be modeled as
objects

What tools do we have?

ChangeSorter: log of executable statements, not
all entities are objects, coarse granularity

CoExist: coexisting versions, continuous testing,
change-oriented, no dependency tracking

Epicea: change-oriented, no dependency tracking

JET: snapshot-based, tracks dependencies

Proposed solution

Do dependency analysis based on the system
history

Structural dependencies
The suggested rearrange of changes is based on
structural relationships between the entities

3 types of dependencies

Class hierarchy dependencies

References to variables and classes

Message sends

Examples
Object subclass: #AbstractTimeZone

instanceVariableNames: ’’
classVariableNames: ’’
poolDictionaries: ‘ChronologyConstants’
category: ’Kernel-Chronology’

Trait named: #TClass
 uses: TBehaviorCategorization
 category: ’Traits-Kernel-Traits’

AbstractTimeZone >> printOn: aStream
 super printOn: aStream.  
 aStream
 nextPut: $(;  
 nextPutAll: self abbreviation;

nextPut: $).

Message sends
3 kinds with different scope for a candidate set

Messages sent to self are restricted to the current
class hierarchy

Messages sent to super are restricted to the upper
part of class hierarchy

Messages sent to classes are restricted to the
class side of the given class

Unknown sends

If the message sent don’t fall into any of the
previous categories, we have to put all
implementors in the candidate set

This is what we call an unknown send

Basically any polymorphic message can lead to
false positives in the candidate set

Implementation

One visitor for Epicea events

Another visitor for AST nodes to find
dependencies in methods

Early prototype called Tracks: 
http://smalltalkhub.com/#!/~LucasGodoy/Tracks

http://smalltalkhub.com/#

Future work
Dealing with shadowing

History reconstruction

Integration with Epicea

Dependency transitivity

Visualization of dependencies (Telescope?)

Performance test & optimization

In summary
To make an atomic commit by cherry-picking
changes can be time consuming

We propose a tool to make it easier

The tool suggests additions to the change-set by
finding dependencies between changes made to
the system

You can send feedback and comments to
godoy.lucas@gmail.com

