
Understanding Pharo’s global state

to move programs

through time and space
Guillermo Polito, Noury Bouraqadi, Stéphane 

Ducasse, Luc Fabresse
Ecole des Mines de Douai, RMoD/Inria

Stéphane Ducasse
IWST 2014, ESUG, Cambridge

Tuesday 19 August 14



The problem:
moving code around

environment I environment II
(another time, another machine)

MyLogger

MyCache

Tuesday 19 August 14



The problem:
moving code around

environment I environment II
(another time, another machine)

MyLogger

MyCache

Tuesday 19 August 14



The problem:
moving code around

environment I environment II
(another time, another machine)

MyLogger

MyCache

MyLogger

MyCache

Tuesday 19 August 14



The problem:
moving code with global state around

• should global state be reinitialized?

• should it be kept and moved as well?

• should it be rebound to some already 
existing object?

Tuesday 19 August 14



The main challenge (by example):
non-explicitness

WeakIdentityKeyDictionary subclass: #ASTCache
    classVariableNames: ’Default’.

ASTCache>>at: aCompiledMethod
    ^ self
        at: aCompiledMethod
        ifAbsentPut: [ self newASTFor: aCompiledMethod ].

ASTCache>>newASTFor: aMethod
    "creation of the AST..."

ASTCache>>reset
    self removeAll.

ASTCache class>>default
    ^ Default ifNil: [ Default := self new ].

ASTCache class>>shutDown
    self default reset.

• Ad-hoc implementation of a cache
    => no clear API

• It’s incomplete (e.g., lack support for a 
recycling strategy)
    => each cache implements
         its own features

• We know it is a cache just because of 
the class name
    => no programatic way to
         identify it

Tuesday 19 August 14



The need:

Understanding

the global state

Tuesday 19 August 14



A classification
Category #
Constants 1722
Settings 236

Singletons 65
Graphical Res. 47

Caches 43
Registries 31

Session Specific 27
Process Controllers 11

Finalizables 6

Tuesday 19 August 14



Some possible solutions

• Reification of implicit elements

• Moving responsibilities to the language

Tuesday 19 August 14



Reification provides with

• Explicitness

• Unified APIs

• Frameworks and libraries can profit from it 
(particularly code-migration ones)

E.g.,
first class instance variables,
first class processes,
first class caches

Tuesday 19 August 14



Moving responsibilities
to the language

• So the system can introspect itself

• Modify itself

• And control itself

E.g.,
flush caches on low memory

Tuesday 19 August 14



Understanding Pharo’s global state

to move programs

through time and space

• A classification of global state usage

• Detected a need for reification

• Detected a need for moving some responsibilities to the 
language

Guillermo Polito, Noury Bouraqadi, Stéphane 
Ducasse, Luc Fabresse

Ecole des Mines de Douai, RMoD/Inria

Tuesday 19 August 14


