
Top-Down Parsing with Parsing Contexts
A Simple Approach to Context-Sensitive Parsing
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Abstract
The domain of context-free languages has been extensively
explored and there exist numerous techniques for parsing (all
or a subset of) context-free languages. Unfortunately, some
programming languages are not context-free. Using standard
context-free parsing techniques to parse a context-sensitive
programming language poses a considerable challenge. Im-
plementors of programming language parsers have adopted
various techniques, such as hand-written parsers, special lex-
ers, or post-processing of an ambiguous parser output to deal
with that challenge.

In this paper we suggest a simple extension of a top-down
parser with contextual information. Contrary to the tradi-
tional approach that uses only the input stream as an input to
a parsing function, we use a parsing context that provides ac-
cess to a stream and possibly to other context-sensitive infor-
mation. At a same time we keep the context-free formalism
so a grammar definition stays simple without mind-blowing
context-sensitive rules. We show that our approach can be
used for various purposes such as indent-sensitive parsing,
a high-precision island parsing or XML (with arbitrary el-
ement names) parsing. We demonstrate our solution with
PetitParser, a parsing-expression grammar based, top-down,
parser combinator framework written in Smalltalk.

Keywords Parsing Expression Grammars, Semi-Parsing,
Top-Down Parsing, PetitParser, Context-Sensitive Parsing

1. Introduction
Context-free grammars (CFGs) [1], which are used to de-
scribe context-free languages, are very popular among parser
developers. There are numerous parsers for a subset of CFGs
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(LALR, LR, LL and others [2, 3]) and there are techniques
for a full set of CFGs as well (GLR [4], GLL [5]).

Parsing Expression Grammars (PEGs) are another for-
malism for describing languages [6]. PEGs are closely re-
lated to top-down parsing and they are syntactically similar
to context-free grammars. PEGs can handle some context-
sensitive grammars (CSG), e.g., anbncn [6], but they cannot
handle all of them.

Unfortunately, some computer languages cannot be ex-
pressed with either CFGs or PEGs. For example, C is not
context-free because of its typedef feature. Python [7] has
a context-free grammar definition,1 but it requires a spe-
cial lexer “on steroids” to generate indent and dedent to-
kens. Many languages might have an ambiguous context-
free grammar because of the famous dangling else prob-
lem.2 Even an XML-like language with arbitrary element
names (contrary to a finite set of element names) cannot be
expressed in CFG. The common approaches to overcome
the limitations of context-free parsers is to write a parser
manually (e.g., Ruby), or add pre-processing (e.g., Python)
or post-processing phase (e.g., XML, dangling else prob-
lem). Such approaches are not automated and can be time-
consuming and error-prone.

In this paper we suggest a simple extension to top-down
parsers that allows for context-sensitive behaviour. We pro-
pose to extend the input parameter of a parsing function from
an input string to a parsing context. A parsing context con-
tains an input string, but it can also contain other informa-
tion. Any parsing function can access whole context infor-
mation and is allowed to change it. Because the result of
parsing can depend on something other than an input stream,
we can increase the computational power of a parser. For ex-
ample, if a parsing context contains a stack we can reach the
computational power of a Turing machine [8]. 3

1 https://docs.python.org/3/reference/grammar.html
2 http://en.wikipedia.org/wiki/Dangling_else
3 If a pushdown automaton (context-free parser) is extended with a second
stack it can simulate a Turing machine. The first stack simulates a tape to
the left of the current position, the second stack simulates a tape to the right
of the current position.
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Yet we don’t want to give up the simplicity and com-
prehensibility of context-free grammars. We therefore keep
the context-free formalism (i.e., rules of the form N ← X ,
where N is nonterminal and X is a sequence of nonterminals
and terminals), and we hide the context-sensitivity behind
nonterminals that refer to parsing functions utilizing pars-
ing contexts. The rules are universal and can be used (and
re-used) in multiple grammars.

We have implemented our idea in PetitParser [9], a top-
down PEG-based parser combinator [10] framework using
packrat parsing [11] written in Smalltalk.

The contributions of this paper are (i) a description of a
simple extension that enables the implementation of context-
sensitive features in top-down parsers; (ii) an implementa-
tion in PetitParser; and (iii) a brief description how to use
parsing contexts to implement universal nonterminals for in-
dentation sensitive parsing, XML parsing or high-precision
island parsing.

The paper is organized as follows: section 2 describes our
extension. Section 3 shows how to implement our extension
in PetitParser and discusses the backtracking, memoization
and modularity issues. Section 4 presents how to use our
extension to implement context sensitive features, namely
indentation-sensitive parsing and high-precision island pars-
ing. Section 6 presents the related work and the section 7
concludes this paper.

The implementation of our extension is available online.4

The reader is invited to download and explore the examples.

2. Parsing Contexts in a Nutshell
The basic idea of parsing contexts is very simple: Use a
parsing context as an input to a parsing function instead of an
input stream. A parsing context encapsulates an input stream
as well as possibly other information. Any parsing function
can access the context and can modify it.

This greatly increases the computational power of a tra-
ditional context-free parser without introducing hard-to-read
grammatical rules. We seek to parse programming languages
that are a subset of context-sensitive languages while aim-
ing for simplicity and comprehensibility. For this reason the
rules adhere to a context-free formalism. The rules are still
in a form N ← X , where N is nonterminal and X is a se-
quence (possibly empty) of nonterminals and terminals. The
context-sensitive behaviour is hidden behind universal non-
terminals that can be used in various use cases.

Our solution is applicable to any top-down parser. Top-
down parsers use backtracking [12], which provides unlim-
ited lookahead, while using memoization (i.e., caching) to
avoid exponential complexity that arises when the same text
is repeatedly parsed in backtracking alternatives [11, 13]. It
is therefore essential for parsing contexts to support these
techniques.

4 http://smalltalkhub.com/#!/~JanKurs/PetitParser/

To enable backtracking, it must be possible to remember
and restore contexts. When a top-down parser approaches
a decision point, the parsing context is saved; then an al-
ternative is selected. If the given alternative proves to be a
good one, parsing continues as usually. If the given alterna-
tive fails, the parser restores the context (which might have
changed while parsing the alternative) and tries another al-
ternative.

To support memoization, a context has to provide a key
to the lookup table of cached results. A standard memoizing
parser stores the results of parsing under a key consisting of
an (input, position) pair. With parsing contexts, the key be-
comes (input, position, context). This functionality overlaps
with the remember and restore functionality used in back-
tracking.

Parsing contexts do not change the semantics of context-
free parsing function (e.g., choice, sequence) and imposes
almost no performance overhead.

2.1 Using Parsing Contexts
To access a parsing context we use an anonymous parsing
function. Its only parameter is a parsing context. The body
of the parsing function can be almost any code in a target
language. The contract of the parsing function is to return a
consumed input (possibly empty) in the case of a successful
parse, or to return failure f in the case of an unsuccessful
parse. To define a parsing function p, we use the following
syntax N ←[:context | ... ] . We extend rules of the
form N ← X with the variant N ← p to define context-
sensitive nonterminals.

The idea of parsing contexts emerges in combination with
a parsing framework that predefines some important context-
sensitive parsing functions. These functions are then referred
to by universally applicable non-terminals. Thus, a grammar
implementor does not need the specialized form N ← p

and can stick with the familiar context-free formalism.
Take for example an XML-like language. The rule:

R ← ’<’ID’>’ ’</’ID’>’

is not context-free if we want arbitrary ID s to match (and
if there is an unbounded number of possible ID s [8]), so
it cannot be expressed in a context-free form. A developer
has to define a context-free grammar that accepts a superset
of XML with any ID pairs and implement an extra pass to
verify if the ID pairs match.

Yet, if a framework predefines context-sensitive nonter-
minals OPENTAG and CLOSETAG representing the open-
ing and closing of an XML element, we can simply use
these nonterminals. The context-sensitive XML-like gram-
mar looks just like a context-free one:

start ← element

element ← OPENTAG content CLOSETAG

content ← element*

ID ← letter+
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OPENTAG ← [: context |

result ← ID parse: context.

context elemStack push: result.

↑ result

]

CLOSETAG ← [: context |

result ← ID parse: context.

(context popStack == result)

ifTrue: [

↑ result.

].

↑ Failure

]

Listing 1. Implementation of OPENTAG and CLOSETAG

using parsing contexts and Smalltalk as an implementation
language.

The developer does not need to know that there is a
hidden (possibly complex) code using parsing contexts, as
Listing 1 shows.

Another example, in the case of C-like languages, is a
TYPEDEF nonterminal that stores the type name into the

type table in a parsing context, and a TYPE nonterminal
that succeeds only if it sees the identifier that is in the type
table.

In case of Python-like layout sensitive-languages, we can
define INDENT and DEDENT tokens. From the user’s point
of view, they are just non-terminals and their complexity is
hidden.

3. PetitParser Implementation
PetitParser is a popular PEG implementation for Smalltalk
(see Appendix A). PetitParser is easy to adapt to parsing
contexts. It suffices to change the parse: method from:

PetitParser >>parse: stream

...

to the context-aware parsing method:

PetitParser >>parse: aContext

...

Object subclass: #Context

instanceVariables: ’stream ’

Context >>stream

↑ stream

For convenience we extend Context with the Stream

protocol as depicted in Listing 2.
Contexts are extensible with the help of a properties pro-

tocol. Properties are stored in a dictionary instance vari-
able and can be accessed and set via getProperty: and
setProperty:to: methods.

Context >>next

"Mimic stream behaviour"

↑ stream next

Context >>peek

"Mimic stream behaviour"

↑ stream peek

Listing 2. A Context mimicry to provide a Stream

protocol.

Context >>remember

| memento |

memento ← ContextMemento new.

memento stream: stream copy.

self rememberProperties: memento.

↑ memento

Context >>restore: memento

stream ← memento stream copy.

self restoreProperties: memento.

Context >>rememberProperties: memento

properties keysAndValuesDo:

[:key :value |

memento setProperty: key

to: value copy.

]

Context >>restoreProperties: memento

memento propertiesKeysAndValuesDo:

[:key :value |

self setProperty: key

to: value copy.

]

Listing 3. A memento protocol of Context .

To save and restore contexts we apply the memento pat-
tern [14] (Listing 3). To ensure that a memento cannot be ac-
cidentally changed, setters and getters are implemented us-
ing a copy .

We use the memento to support backtracking, and to
implement a memoizing parser that adopts the memento as
a key to the memoization table (Listing 4).

4. Case Studies
We now present two advanced applications of parsing con-
texts, one to support indentation-sensitive parsing, and an-
other to support island parsing.

4.1 Indentation Sensitive Parsing
Indentation-sensitivity (used in Python, Haskell, and F#) is
an interesting feature that is hard to implement in context-
free parser.
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MemoizingParser >>parseOn: context

| key result |

key ← context remember.

result ← memoTable at: key

result ifNotNil: [

↑ result

].

...

Listing 4. An implementation of MemoizingParser

compatible with Context .

Python uses a special lexer to produce context-sensitive
tokens indent and dedent, that represent an increased or
decreased indentation of a first word on a line. Python’s lexer
maintains a special stack to track indentation levels. As the
indents token is recognized a new value is pushed to the
stack. As the dedent token is recognized a value is popped
from the stack.

PetitParser is designed to build scannerless parsers. As
such, it offers no easy way to track indentation levels. By
extending PetitParser with parsing contexts, we can easily
track this additional information with the help of an inden-
tation stack. We define two new parsers, IndentParser

and DedentParser that mimic the Python-like indent and
dedent tokens. Indent succeeds if a line starts in a column
greater than the current one in the indentation stack. De-
dent succeeds if a line starts on the column that matches
the one at the top of the stack. See Listing 5 and List-
ing 6. Both parsers access the Context and modify the
#indentation property containing the indentation stack.

We demonstrate their use in Listing 7 where we define an
indentation-sensitive rule suite . A suite is a block of
code whose statements are all at the same indentation level.

4.2 Bounded Seas
Island parsing [15] is a form of semi-parsing used to recog-
nise just certain parts of interest in a source file (i.e., the
“islands”) and ignore the rest (i.e., the “water”). The tradi-
tional approach of island parsing defines water as “anything
if everything else fails”. Such a water is easy to define but it
ignores the structure of a grammar.

To illustrate, consider an XML file with a list of items as
in Listing 8. Each item contains a set of values. Suppose the
XML file is malformed and contains broken value pairs.
The island grammar allows the malformed value pairs
to be ignored, but it cannot say which item the value

belongs to. This problem can be solved by using bounded
seas.

A bounded sea is an expression that searches for an is-
land in a scope limited by a boundaries. Boundaries are ex-

PPParser subclass: #IndentParser.

IndentParser >>parse: context

| column indentation stack |

" If at the begining of a line"

" consume leading whitespaces "

(context isBeginOfLine) ifFalse: [

↑ Failure

].

context consumeLeadingWhitespace.

" Save the current column "

column ← context stream column.

stack ← (context propertyAt: #indent).

indentation ← stack top.

(column > indentation) ifTrue: [

stack push: column.

↑ #indent

].

↑ Failure

Listing 5. An implementation of IndentParser that
detects a Pyton-like indent token.

PPParser subclass: #DedentParser.

DedentParser >>parse: context

| column referenceIndentation stack |

(context isBeginOfLine) ifFalse: [

↑ Failure

].

context consumeLeadingWhitespace.

column ← context stream column.

" Restore previous column from the "

" stack and compare with current "

stack ← (context propertyAt: #indent).

stack pop.

referenceIndentation ← stack top.

(column == referenceIndentation) ifTrue

: [

↑ #dedent

].

↑ Failure

Listing 6. An implementation of DedentParser that
detect a Python-like dedent token.

suite ← (newline indent

statement+

dedent)

indent ← IndentParser new

dedent ← DedentParser new

newline ← #newline asParser

statement ← suite / if / for / · · ·

Listing 7. Grammar for a layout-sensitive suite rule.
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<list>

<item>

<value>a</value>

<value>b <value> <!-- Malformed -->

<value>c</value>

</item>

<item>

<value>d</value>

<value>e</value>

<item>

</list>

Listing 8. An example of a XML file to parse.

start ← ’<list >’

item*

’</list >’

item ← ’<item >’ valueSea* ’</item’>

valueSea ← ∼value∼
value ← ’<value >’content ’</value >’

content ← · · ·

Listing 9. A fault-tolerant XML grammar that uses
bounded seas.

pressions that appear before and after the island. We use the
syntax ∼island∼ syntax to create a bounded sea from
island .

To parse a malformed XML file (e.g., the one as in
Listing 8) we define a grammar as in Listing 9. value

from valueSea is always searched between ’<item>’

and ’</item’> . There could be water (e.g., malformed
value , comments, etc.) both before and after value .

Because the bounded sea never crosses ’<item>’ or
’</item>’ the parser exactly knows which item a
value belongs to.

Such a sea behaviour is not context-free. Boundaries
are by definition context-sensitive, because they are basi-
cally the rules used before and after a sea. As a result the
valueSea being called from the rule start from List-

ing 9 fails on input:

‘</item><item><value>a</value>’

But the very same rule valueSea succeeds being called
from R , where R ←valueSea .

As it turns out, a bounded sea can be implemented as a
context-sensitive non-terminal using parsing contexts. Pars-
ing contexts are used to keep a stack of invoked rules. Sub-
sequently, a bounded sea can access the stack and use it to
compute its boundaries.

5. Discussion
Albeit very simple and straightforward, the current imple-
mentation of a parsing contexts is guilty of exposing global

state. Presently, parsing contexts behave as global environ-
ments, that can be accessed and modified from any rule. It
is a matter of our further research to implement parsing con-
texts that supports reduced visibility of data.

Our solution sacrifices the linear complexity of Packrat
parsing [11] to unlimited complexity, depending on the im-
plemented extensions. For example, the complexity of the
indentation-sensitive extension is quadratic in the worst case
(at each position we can detect at most n indentation levels,
where n is a size of an input). The average complexity is
probably better, but this is a matter of further research.

6. Related Work
Attribute grammars [16] extend the possibilities of context-
free grammars by introducing attributes and by evaluating
them in the nodes of an abstract-syntax tree. Parsing con-
texts resemble attribute grammars with some important dif-
ferences: (i) parsing contexts do not filter ambiguous results
and are therefore suitable even for non-ambiguous grammars
such as PEGs; (ii) parsing contexts directly use the attributes
to determine a parsing result; and (iii) parsing contexts hide
the attributes, so that a grammar looks looks like a normal
context-free grammar (without attributes). Parsing contexts
still allow for attributes and do not limit their use.

Context-sensitive grammars [1] are primarily used in lin-
guistics, because context-free grammars cannot describe
the phenomena of natural language. Yet, the complexity
(PSPACE [17]), understandability and poor semantic suit-
ability led developers to alternatives. In order to specify
formal properties of a spoken language, Joshi introduced
a mildly context-sensitive grammars [18, 19], that are by
definition parsable in polynomial time. There are mildly
context-sensitive grammars such as tree adjoining grammars
[20], linear context-free rewriting systems [21], or multiple
context-free grammars [22].

In contrast to other indentation-sensitive approaches,
such as Erdweg et al. or Adams [23, 24], our solution a) does
not extend BNF notation and b) does not require generalized
parsing [23]. The solution we present is specific to Python;
the general indentation-sensitive extension is described in a
bachelor’s thesis [25].

7. Conclusion
In this paper we present a simple extension of PetitParser
that allows us to add support for a context sensitive be-
haviour of XML-like grammars, indentation-sensitive gram-
mars and for high-precision and composable island parsing.
We extended an input to a parsing function with a pars-
ing context that can contain information other than an in-
put stream. Parsing contexts are suitable for any top-down
parsing technique, because they support memoization, back-
tracking. Parsing contexts in PetitParser are also extensible
and backward compatible.
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7.1 Future work
In our future work we plan to investigate the capabilities
of parsing-context to capture the most common context-
sensitive features of programming languages. Furthermore,
we plan to investigate a parsing contexts that supports re-
duced visibility of data.
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building blocks for parsers modeled as a graph of compos-
able objects (they are modular and maintainable, and can
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d) and Packrat Parsers that improve performance of PEGs
by using memoization.
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A.1 Parsing Expression Grammars
PEGs were first introduced by Ford [6] and the formalism is
closely related to top-down parsing. PEGs are syntactically
similar to CFGs [1], but they have different semantics. The
main semantic difference is that the choice operator in PEG
is ordered — it selects the first successful match — while the
choice operator in CFG is ambiguous. PEGs are composed
using the operators in Table 1.

Operator Description
′ ′ Literal string
[] Character class
· Any character
(e) Grouping
e? Optional
e∗ Zero-or-more repetitions of e
e+ One-or-more repetitions of e
&e And-predicate, does not consume input
!e Not-predicate, does not consume input
e1 e2 Sequence
e1 / e2 Prioritized choice

Table 1. Operators for constructing parsing expressions

A.2 PetitParser in Smalltalk
To create a parsing expression as in Table 1, PetitParser uses
internal DSL. In this paper we will use a DSL as in Table 2.

Each of the operators is implemented as a subclass
of PPParser . PPParser contains an abstract method
parse: that accepts an input as an argument and performs

the parsing and returns a result or a failure.

Operator Description

’abc’ asParser Literal string
#any asParser Any character
#newline asParser A new line
(p) Grouping
p ? Optional p
p * Zero-or-more repetitions
p + One-or-more repetitions of p
p and And-predicate
e not Not-predicate
p1 p2 Sequence

p1 / p2 Prioritized choice

Table 2. Operators for constructing parsing expressions
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