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Abstract

Expandable collections are collections whose size may vary
as elements are added and removed. Hash maps and ordered
collections are popular expandable collections. In the Pharo
programming language, expandable collection classes offer
an easy-to-use API, however this apparent simplicity is
accompanied by a significant amount of wasted resource.

We describe some improvements of the collection library
to reduce the amount of waste associated with collection
expansions. We have designed a new collection library for
Pharo that exhibits better resource management than the
standard library. Across a basket of 17 applications, our
optimized collection library significantly reduces the memory
footprint of the collections: (i) the amount of intermediary
internal array storage by 73%, (ii) the number of allocated
bytes by 67% and (iii) the number of unused bytes by 72%.
This reduction of memory is accompanied with a speedup of
about 3% for most of our benchmarks. We further discuss
the applicability of our findings to other languages, including
Java, C#, Scala, and Ruby.

1. Introduction

Creating and manipulating any arbitrary group of values is
largely supported by today’s programming languages and
runtimes [1]. A programming environment typically offers a
collection library that supports a large range of variations in
the way collections of values are handled and manipulated.
Collections exhibits a wide range of features [1-3], includ-
ing being expandable or not. An expandable collection is a
collection whose size may vary as elements are added and
removed. Expandable collections are typically implemented
by wrapping a fixed-sized array. An operation on the collec-
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tion is then translated into primitive operations on the array,
such as copying the array, replacing the array with a larger
one, inserting or removing a value at a given index.
Unfortunately, the simplicity of using expandable collec-
tions is counter-balanced by resource consumption when not
adequately employed [4—6]. Pharo! is a dynamically typed
programming language which offers a large and rich collec-
tion library. Consider the case of a simple ordered collection
(OrderedCollection in Pharo and ArrayList in Java). Using
the default constructor, the collection is created empty with
an initial capacity of 10 elements. The 11th element added
to it triggers an expansion of the collection by doubling its
capacity. We have empirically determined that in Pharo a
large portion of collections created by applications are empty.
As a consequence, their internal arrays are simply unused.
Moreover, only a portion of the internal array is used. After
adding 11 elements to an ordered collection, 9 of the 20 slot
arrays are left unused. Situations such as this one scale up as
soon as millions of collections are involved in a computation.
This paper is about measuring wasted resources in Pharo
(memory and execution time) due to expandable collections.
Improvements are then deduced and we measure their impact.
Research questions we are pursuing are:

A - How to characterize the use of expandable collections
in Pharo? Understanding how expandable collections are
used is highly important in identifying whether or not
some resources are wasted. And if this is case, how such
waste occurs.

B - Can the overhead associated with expandable collections
in Pharo be measured? Assuming the characterization of
collection expansions revealed some waste of resources,
measuring such waste is essential to properly benchmark
improvements that are carried out either on the application
or the collection library.

C - Can the overhead associated with expandable collections
in Pharo be reduced? Assuming that a benchmark to
measure resource waste has been established, this question
focuses on whether the resource waste accompanying
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the use of a collection library can be reduced without
disrupting programmer habits.

Our results shows the Pharo collection library can be
significantly improved by considering lazy array creation
and recycling those arrays. The expandable collections of
Java, Scala, Ruby and C# are very similar to those of Pharo.
We therefore expect our recommendations to be beneficial in
these languages.

This paper is structured as follows: Section 2 describes
the Pharo expandable collections and synthesizes their im-
plementation. Section 3 describes a benchmark composed of
17 Pharo applications and a list of metrics. Section 4 details
the use of expandable collections in Pharo, both from a static
and dynamic point of view. Section 5 details the impact on
our benchmark to have lazy array creation. Section 6 presents
a technique to recycle arrays among different collections.
Section 7 describes an approach to find missing collection
initialization. Section 8 discusses the case of other languages.
Section 9 presents the work related to this paper. Section 10
concludes and presents our future work.

2. Pharo’s Expandable Collections

The collection library is a complex piece of code that exhibits
different complex aspects [7]. One of these aspects is whether
a collection created at runtime may be resized during the
life time of the collection. We qualify a collection with a
variable size as “expandable”. An expandable collection is
typically created empty, to be filled with elements later on.
Typical expandable collections include dictionaries (usually
implemented with a hash table), lists, growable arrays in
which elements may be added and removed during program
execution. Interestingly, expandable collections are designed
to only expand. Removing elements from a collection does
not trigger any shrinkage of the internal collection. We
therefore only focus on element addition and not removal.

2.1 Issues with expansions

Expandable collections are remarkable pieces of software:
most expandable collections have a complex semantic hid-
den behind a simple-to-use interface. Consider the class
Dictionary. The class employs sophisticated hashing tables to
balance efficiency and resource consumption. Such complex-
ity is hidden behind what may appear as trivial operations
The programmer has to simply address what to add or remove
from the collection while the collection implementation takes
care of growing or shrinking the collection accordingly.

Expandable collections commonly used in Pharo employ
a fixed-sized array as an internal data structure for storage.
Adding or removing elements from an expandable collection
are translated into low-level operations on the internal storage,
typically copying, setting or emptying a particular part of the
array storage.

The creation of an expandable collection may be parametri-
zed with an initial capacity. This capacity represents the

initial size of the array’s internal storage. The size of the
collection corresponds to the number of elements actually
stored in the collection. Adding elements to a collection in-
creases its size and removing elements shrinks it. When the
size of the expandable collection reaches its capacity or close
to it, the capacity of the collection is increased, leading to an
expansion of the collection. A collection-specific threshold
ratio size / capacity drives the collection expansion. A 0.75
and 1.0 are commonly used thresholds (0.75 for collections
operating with hashtags values and 1.0 for every other col-
lections). Consider the class OrderedCollection, a frequently
used expandable collection. Consider an ordered collection
of a given capacity c. Adding one element to the collection
increases its size s by one. When s = ¢, then the collection
is expanded to have a capacity of 2c elements.

Expanding a collection is a three-step operation summa-
rized as follows:

1. Creation of a larger new array — the size of the collection
having reached its capacity (i.e., the size of the internal
data storage), a new array is created, typically twice as
large as the original array.

2. Copying the old array into the new one — content of the
old array is entirely copied into the first half of the new
array.

3. Using the new array as the collection’s storage — the
expandable collection takes the new array as its internal
storage, realized by simply making the storage variable
point to the new array. The old array is garbage collected
since it is not useful anymore.

Although efficient in many situations, expandable collec-
tions may result in wasted resources, as described below.

Expansion overhead. Expanding a collection involves cre-
ating and copying of possibly large internal array storage.
Consider the following micro benchmark:

¢ := OrderedCollection new.
[ 30000000 timesRepeat: [ c add: 42 ] ] timeToRun
=> 3375 milliseconds

This benchmark simply measures the time taken to add
30 million elements to an ordered collection. In our current
execution setting, the micro benchmarks reported in this
section have a variation of 7%.

The class OrderedCollection, when instantiated using the
default constructor, as above, uses an initial capacity of 10
elements. An expansion of the collection occurs when adding
the 11-th element. The capacity is then doubled. The size
of the collection is 11 and its capacity is 20. When the 21st
element is added to it, its capacity is 40.

Adding 30 million elements in a collection triggers
log2(30 000 000 / 10) = 22 expansions. Such expansions
have heavy cost, both in terms of memory and CPU time.
When the capacity is equal to or greater than the number of
elements to be added:



¢ := OrderedCollection new: 30000000.
[ 30000000 timesRepeat: [ c add: 42 ] ] timeToRun =>
=> 1356 milliseconds

In such a case, no expansion occurs, thus resulting in
adding the elements without any expansion phases.

Copying of memory. At each expansion of the collection, the
whole internal array content has to be copied into the newly
created array. Consider the OrderedCollection in which 30 M
elements are added to it. Since the collection is expanded 22
times, the internal array has been copied 21 times.

At the first expansion, when the internal storage grows
from 10 to 20 slots, 10 slots are copied. Since each array
slot is 4 bytes long, 40 bytes have been copied. 80 bytes are
copied for the second expansion. Since the internal array size
increases exponentially, the number of bytes that are copied
scale up easily. Adding 30M elements produces 22 expan-
sions, incurring Z?io 10 x 2° = 41M slot copies. In total,
41 * 4 = 164Mb of memory are copied between unnecessary
arrays. Such copying could be reduced or avoided by giving
a proper initial capacity to the collection.

Virtual memory. The memory of a virtual machine is divided
into generations. Garbage collection happens by copying part
of a generation into a clean generation. Such copying is likely
to happen across memory pages [9], since the new array is
likely to be in the young generation (i.e., part of the memory
used for short lived objects and new object creations). In
addition, the copying of arrays may activate part of the virtual
memory stored on disk if the part of the memory containing
the old array has been swapped to disk [9].

Collector pauses. Garbage collection copies and joins por-
tions of memory to reduce memory fragmentation [10]. Copy-
ing and scanning a large portion of memory, such as collec-
tions, may cause large and unpredictable collection pause
times. The garbage collection pauses in proportion to array
size [11].

Unnecessary slots. Expanding a collection doubles the size
of the internal array representation. As a consequence, a
collection having a size less than its capacity has unused
slots.

For example, adding 30 million elements to a collection
with the default initial capacity generates 22 expansions.
After the 22nd expansion, the collection has a capacity of
10%222 = 41,943,040, large enough to contain the 30,000,000
elements. As a consequence, the collection has 41,943,040
— 30,000,000 = 11,943,040 unused slots. Since each slot
weighs 4 bytes, nearly 48Mb of memory are unused after
having added the 30M elements.

Note that the issue of having unused portion of the array
has already been mentioned (Pattern 1, 3,4 in [12]). Our paper
reports the evolution of the amount of unused memory space
against the improvement we have designed of the collection
library. Our approach to address this issue is new and has not
been considered before.

3. Benchmarking and Metrics

To move away from micro-benchmarks and understand this
phenomenon better on real applications, we pick a represen-
tative set of Pharo applications and profile their execution.

3.1 Benchmark

Appendix A lists the 17 Pharo applications we consider in our
benchmark. These applications are open source?, thus easing
a replication of our experiments. These applications are daily
used both in industries and academia. They are furthermore
supported by active communities.

We employ the benchmark to approximate how expand-
able collections are used in general.

3.2 Metrics about the collection library

We propose a set of metrics to understand how expandable
collections are used and what the amount is of resulting
wasted resources. The metrics that we propose to characterize
the use of expandable collections for a particular software
execution are:

* NC — Number of expandable Collections — This metric
corresponds to the number of expandable collections
created during an execution. This metric is used to give
relative numbers (i.e., percentages) for most of the metrics
described below.

NNEC — Number of Non Empty Collections — Number of
expandable collections that are not empty, even temporar-
ily, during the execution.

NEC — Number of Empty Collections — Number of ex-
pandable collections to which no elements have been
added during the execution. A collection for which el-
ements have been added then removed are not counted by
NEC.

NCE — Number of Collection Expansions — Number
of collection expansions happening during the program
execution.

NCB — Number of Copied Bytes due to expansions —
Amount of memory space, in bytes, copied during the
expansions of expandable collections.

NAC — Number of internal Array Creations — Number of
array objects created used as internal storage during the
execution.

* NOSM — Number of collections that are filled Only in the
Same Methods that have created the collections.

* NSM — Number of collections filled in the Same Methods
that have created them.

* NAB — Number of Allocated Bytes — Accumulated size of
all the internal arrays created by a collection.
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* NUB — Number of Unused Bytes — Size of the unused
portion of the internal array storage. For a given collection,
this metric corresponds to the difference capacity — size.

3.3 Computing the metrics

Measuring these metrics involves a dynamic analysis to
obtain an execution blueprint for each collection. We have
instrumented the set of expandable collections in Pharo to
measure these metrics.

We measure only the collections that are directly created
by an application. Computation carried out by the runtime is
not counted. If we equally counted collections created by the
runtime and the application, a residual amount would have
to be determined since collections may be counted several
times across different applications.

Collections are often converted thanks to some utility
methods. For example, an ordered collection may be con-
verted as a set by sending the message asset to it. Converting
an expandable collection into another expandable collection
sums up in our measurements.

Our measurements, used to characterize the use of ex-
panded collections and measure wasted resources associated
with them, have to be based on representative application
executions, close to what programmers are experiencing. Un-
fortunately, Pharo does not offer a standard benchmark for
measuring performance in the same spirit as DaCaPo [13].
We have designed our benchmark from two different sets
of program executions: (i) execution of unit tests and (ii)
performance scenarios.

Unit-test benchmarks. Running unit tests is convenient in
our setting since unit tests are likely to represent common
usage and execution scenarios [14]. We execute the unit tests
associated with each of the 17 applications.

The primarily purpose of a unit test is to validate cor-
rectness. A unit test typically represents a short execution
scenario that is quick to run. We will profile the execution of
unit tests to measure the creation of short-lived small collec-
tions. Executing unit tests is an action often performed by a
programmer. Optimizing this action is therefore a valuable
contribution. Note that we consider unit tests as part of the
applications. This means that collections created within a unit
test are counted in our measurement.

Performance benchmarks. We use 15 benchmarks that per-
form a computation on a large amount of input data. From
the 17 applications, we consider 5 applications for which it
makes actual sense to run a long execution. These applica-
tions are marked with an * and we have three benchmarks for
each of these. These benchmarks have been written by the
authors of the considered application and represent a typical
heavy usage of the application.

Referring to the benchmarks. The tables given at the end of
the papers show the result of our measurements. We refer to
the execution of unit tests for application X as “Benchmark
X”, X ranging from 1 to 17. The long executions are referred

to as “Benchmark bASTY, bNY, bPPY, bRegY, and bRY”,
where Y ranges from 1 to 3.

Table 3 gives the measurement of our benchmark using
the standard collection library of Pharo. This table is used as
the baseline for our improvements of the library.

Minimizing measurement bias. Carefully considering mea-
surement bias is important since an incorrect setup can easily
lead to a performance analysis that yields incorrect conclu-
sions. Despite numerous available methodologies, it is known
that avoiding measurement bias is difficult [8, 15]. An effec-
tive approach to minimize measurement bias is called ex-
perimental setup randomization [15], which consists in gen-
erating a large number of experimental settings by varying
some parameters, each considered parameters being a poten-
tial source of measurement variation. Our measurements are
programmatically triggered, meaning that multiple runs of
our benchmark is easily automatized. We have considered the
following parameters:

* Hardware and OS — We have used two different hardwares
and operating systems ((a) a MacBook Air, 1.3Ghz Intel
Core 15, 4Gb 1333 MHz DDR3, with a solid hard disk
and (b) iMac, Quad-core Intel Core i5, 8 Gb).

Heap size — We run our experiment using different initial
size of the heap (20Mb, 150Mb, 300Mb).

* Repeated run — For each execution of the complete bench-
mark, we have averaged 5 runs, with a random pause
between each run.

* Randomized order — The individual benchmarks (i.e., a
unit-test benchmark or a performance benchmark) are
randomized at each complete benchmark run.

* Reset caches — Method cache located in the VM are
emptied before each run.

GC - Garbage collector has been activated several times
before running each benchmark.

In total, we have considered 9 different experimental
setups. We did not notice any significant variation between
these experimental setups.

The measurements given in appendix are the result of an
average of 9 different executions, each considering a different
combination of the parameters given above.

4. Use of Expandable Collections in Pharo
applications

This section analyzes the use of expandable collections in
Pharo applications. The results given in this section answer
the research question A.

4.1 Dynamic analysis

We have run our two sets of our benchmark and profiled
their executions. The metrics given in Section 3.2 have been



computed and reported in Table 3 for each of the applications
execution.

The execution of the 17 unit test benchmarks create a total
of 2,474,499 expandable collections and the 15 performance
benchmarks create 6,342,087 expandable collections. The
analyses this paper describes focus on the profiling of nearly
9M expandable collections produced by 32 different program
executions (17 unit test benchmarks + 15 performance bench-
marks).

Naturally, very few of these expandable collections live
through the whole execution since the garbage collector reg-
ularly cleans the memory by removing unreferenced collec-
tions. In our measurements, we do not consider the action
of the garbage collector on the collection themselves since
garbage collection is orthogonal to the research questions we
are focusing on.

The number of created collections indicates large dispar-
ities between the analyzed applications. Benchmarks 1, 10,
bReg1 and bReg?2 involve a long and complex execution over
a significant amount of data, indicated by the large number
of created expandable collections. Benchmarks 2, 6, 8, bN1,
bN2, bN3 create a small number of collections, indicating
short executions.

Variation in the measurements. Two executions of the same
code may not necessarily create the same number of collec-
tions, even if no input/output or random number generation
is involved. Measurements vary little over multiple runs of
the benchmarks. Values reported in the tables in the appendix
have been obtained after 10 runs and have an average varia-
tion of 0.0095%. Although the applications we have selected
for our case study do not make use of random number gen-
eration, the use of hash values can make non deterministic
behavior. A hash value is given by the virtual machine when
the object is created. In the case of Pharo, such a hash value
depends on an internal counter of the virtual machine. Con-
sider the following code:

d := Dictionary new.
d at: keyl put: OrderedCollection new.
d at: key2 ifAbsentPut: [ OrderedCollection new ]

The class Dictionary uses the equality relation and hash
values between keys to insert pairs. If we have the relation
keyl = key2 and keyl hash = key2 hash, then the dictionary
considers that the two keys are actually the same and we
have only one instance of OrderedCollection. However, in
case that the hash is not overridden but = is overridden, the
relation key1l hash = key2 hash may be true only sporadically,
thus triggering a non deterministic behavior over multiple

executions?.

Empty collections. Table 3 indicates a surprisingly high pro-
portion of empty collections in our benchmarks. From over

3Redefining = without redefining hash is a classic defect in software
programs and it is widely recognized as such. Unfortunately, this defect
is frequent.

8.6 million expandable collections created by our bench-
marks, 6.6 million (76%) have been created without having
any element added to them. Only 23% of collections have at
least one element added to them during their lifetime.

To understand this phenomena better, we will take a
closer look at the data we obtained. The number of empty
collections created by our benchmark varies significantly
across applications. Consider the application 10 and its
corresponding benchmark. Benchmark 10 creates a total
of 1.4M of expandable collections, for which only 14,891
are non-empty. This application is a refactoring engine that
applies pattern matching and rewriting rules on source code.
The engine is complex due to the underlying optimized logic
engine*. By excluding this application, the ratio of the number
of not empty collections for the unit test benchmarks rises
to 31.3% (NC= 1,043,634 and NNEC= 327,445): about one-
third of collections created by the unit tests are left empty in
the average.

number of 4
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3
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1

0
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Figure 1: Frequency distribution of filled collections (NNEC)

Figure 1 shows the frequency distribution of the bench-
mark for both unit tests and performance benchmarks. There
are four applications that have less than 10% of collections
empty, and four applications that have between 20% and 30%
of collections that are not empty. Performance benchmarks
have a tendency to fill more expandable collections compared
with unit test benchmarks. This highlight an important dif-
ference between two unit-test benchmarks and performance
benchmarks. The first has tendency to create many empty col-
lections over the latter. Benchmark bN3 generates no empty
collection.

Cause of empty collections. We manually have inspected the
applications and benchmarks that generate a high proportion

“Interestingly, PMD, a Java application similar to Refactoring, exhibits the
very same problem [6].



of empty collections. A large proportion of the created empty
collections is caused by the object initialization specified
in the constructors. Consider the constructor of the class

RBVariableEnvironment:

RBVariableEnvironment >>> initialize
super initialize.
instanceVariables := Dictionary new.
classVariables := Dictionary new.
instanceVariableReaders := Dictionary new.
instanceVariableWriters := Dictionary new

This constructor implies that each instance of RBvariable
Environment comes with at least four instances of dictionaries.
The class RBVariableEnvironment is part of a code meta-model
that belongs to the application Refactoring. Most instances of
RBVariableEnvironment actually have their dictionaries empty,
which contributes to the 98% of the collections created by
Benchmark 10 being left empty. This is not an isolated case.
The 17 applications under study are composed of 1,713
classes. We have 375 of these 1,713 classes that explicitly
define at least one constructor. We have also found that 144 of
these 375 classes explicitly instantiate at least one expandable
collection when being instantiated.

Expandable collections created in the constructor and
lazy evaluation of variable are a prominent cause of unused
collections.

Number of array creations. The standard collection library
creates a new array at each collection expansion. Since
instantiating a collection results in creating a new array, the
number of created arrays (NAC) subtracted to the number
of expansions (NCE) is equal to the number of collections
(NC). We have roughly the following relation NAC — NCE
= NC in Table 3. Some differences may be noticed due to
rehashing operations on hash-based collections (e.g., HashSet,
Dictionary) that may be triggered by an application. Such
effects are marginal and have a little impact on the overall
measurements, which is why we do not investigate such minor
variations further.

Collection expansions. From the 8.6M of collections (NC

column), only 0.56% of the collections are expanded 1,002,212
times during the execution of the benchmark (NCE column).

These expansions result in over 62Mb of copies between

these arrays (NCB column).

Unused memory. Summing up the memory consumed by all
the internal arrays yields over 342Mb. More than 296Mb
of these 342Mb are actually unused as a result of having
expandable collections filled only a little on average (i.e., the
size of the collection being much below its capacity).

4.2 Reducing the overhead incurred by collection
expansions

The measurements given in the previous section reveal that
the use of expandable collections may result in wasted CPU
and memory consumption. We use the observations made
above to reduce the overhead caused by expansions. We

propose three heuristics to reduce the overhead incurred by
expandable collections:

Creating the internal array storage on demand. Creating an
internal array only when necessary, i.e., at the first element
added. Since 76% of arrays are empty, lazily instantiating the
internal array will be beneficial.

Reusing arrays when expanding. Expanding a collection in-
volves creating an array larger than the previous one (usually
twice the initial size). After copying, the original array is
discarded by removing all references to it. The task to free
the memory is then left to the garbage collector.

Instead of letting the garbage collector discard old arrays,
arrays can be recycled: a collection expansion frees an array,
which itself may be used when another collection expands.

Setting an initial capacity. About 10% of expandable collec-
tions are created and filled in the same method. These 10%
of the collections have been created by 276 methods across
our benchmark. There are 105 of these 276 methods that use
the default construction with the default initial capacity.
Some of these methods may be refactored to create ex-
pandable collections with an adequate initial capacity.

We have conceived the OptimizedCollection library, a collec-
tion library for Pharo that exhibits better resource manage-
ment than the standard set of collection classes. Optimized-
Collection implements the design points made above. Sec-
tion 5, Section 6 and Section 7 elaborate on each of these
points.

5. Lazy Internal Array Creation

In Pharo, expandable collections have been implemented
under the assumption that a collection will be filled with
elements. This assumption unfortunately does not hold for the
usage scenarios we are facing in our benchmark. Less than a
third of the expandable collections are filled in practice. This
suggests that creating the internal array only when elements
are added is likely to be beneficial. We call this mechanism
lazy internal array creation.

This section describes the first design point, which is to
support lazy internal array creation.

5.1 Creating the array only when necessary

Introducing a lazy creation of the internal array is relatively
easy to implement. Instead of creating the internal storage in
the constructor, we defer its creation when adding an element
to the collection. For this, we need to remember the capacity
for the future creation of the array. Methods that add elements
to the collection have to be updated accordingly.

This simple-to-implement improvement leads to a signif-
icant reduction in memory consumption. Using the default
capacity, an empty ordered collection now occupies 20 bytes
only (in comparison with the 64 bytes without supporting
lazy internal array creation). After adding an element to the



collection, the internal array is created, thus increasing the
size of the collection to 64 bytes.

We have implemented the lazy internal array creation as
described above in all the expandable collection classes. The
following section describes the impact on our case studies.

5.2 Lazy creation on the benchmark

Table 4 gives the metric values of our benchmark when using
the lazy internal array creation. Contrasting Table 3 (using
the standard collection library, i.e., without lazy internal array
creation) with Table 4 (lazy creation) shows a significant
reduction of unused memory and number of created internal
arrays. More specifically, we have:

* The number of array creation (NAC) has been significantly
reduced as one would expect. It went from 8,701,783
down to 2,437,083, representing a reduction of (8,605,147
—2,437,083) / 8,605,147 = 71.67% of array creation.

* The number of unused bytes (NUB) has also been sig-
nificantly reduced. It went from 296Mb down to 8§2Mb,
representing a reduction of (296 — 82) / 296 = 72.29%.

Application 10 is producing a high number of expandable
collections that remains empty during the overall execution.
Using the original collection library, Application 10 created
1,438,380 internal arrays (NAC column in Table 3). Making
the collection library support the lazy internal array creation
makes this value goes to 68,098. A reduction of (1,438,380
— 68,132) /1,438,380 = 95% of created arrays.

The lazy internal array creation has a slight positive impact
on the execution time of the benchmark. By lazily creating
the internal arrays, the execution time has been reduced by
2.38%.

6. Recycling Internal Arrays

A collection expansion is carried out with three sequential
steps (Section 2.1): (i) creation of a larger array; (ii) copying
the old array into the new one; (iii) replacing the collection’s
storage with the new array. The third step releases the unique
reference of the array storage, entitling the array to be
disposed by the garbage collector. This section is about
recycling unused internal arrays and measures the benefits of
recycling.

The general mechanism of recycling arrays along a pro-
gram execution is not new. It has already been shown that for
functional programming avoiding unnecessary array creation
by recycling those arrays is beneficial [17]. Recycling arrays
in a context of expandable collections is new and, as far as
we are aware of, it has not been investigated.

6.1 Recycling arrays on the benchmark

Principle. Instead of releasing the unique reference of an
array, the array is recycled by keeping it within a globally ac-
cessible pool. The array disposed after a collection expansion
is inserted in the pool. The first step of expansion has now to

check for a suitable array from the pool. If a suitable array is
found, the array is removed from the pool and used as internal
array storage in the expanded collection. If no array from the
pool can be used as internal array storage for a particular
collection expansion, a new array is created following the
standard behavior.

When an array is inserted into the pool, the array has to
be emptied so as to not keep unwanted references. Emptying
an array is done by filling it with the ni1 value.

Need for different strategies. Consider the following exam-
ple:

cl := OrderedCollection new.
50 timesRepeat: [ c1 add: 42 ].
c2 := OrderedCollection new.
c3 := OrderedCollection new.

Filling <1 with 50 elements triggers three expansions,
which increases the capacity from 10 to 20, from 20 to 40
and from 40 to 80. Having c1 of a capacity of 80 is sufficient
to contain the 50 elements. The creation of the collection and
these expansions has created and released three arrays sized
10, 20, 40, respectively. These arrays are inserted in a pool of
arrays.

When c2 is created, an array of size 10 is needed for its
internal array storage. The pool of arrays contains an array
of size 10 (obtained from the expansion of c1). This array is
therefore removed from the pool and used for the creation of
c2.

Similarly, c3 requires an array of size 10. The pool contains
two arrays, of size 20 and size 40. The creation of the ordered
collection faces the following choice: either we instantiate
a new array of size 10, or we use one of the two available
arrays.

This simple example illustrates the possibility of having
different strategies for picking an array from the pool. We
propose three strategies and evaluate their impact over the
benchmark:

S1: requiredSize = size — Pick an array from the pool of
exactly the same size that is requested

S2: requiredSize <= size — Pick the first array with a size
equal to or greater than what is requested

S3: size/0.9 < requiredSize < size * 1.1 —Pick an array which
has a size within a range of 20% of what is requested.

The effects of the different strategies on the unit-test bench-
mark is summarized in Table 1. We consider 8 metrics: NC
(number of created expandable collections), NCE (number
of collection expansions), NCB (number of copied bytes),
NAC (number of internal array creations), NAB (number of
allocated bytes), NUB (number of unused bytes), the number
of full garbage collections and the number of incremental
garbage collections.

S1 generates less unused array portions (NUB) than S2
and S3. S2 incurs less collection expansions than S/ and S3,



metrics S S2 S3
NC 2,475,658 2,475,670 | 2,475,708
NCE 21,134 19,118 21,139
NCB 15,519,656 | 14,761,492 | 15,544,560
NAC 542,622 542,757 542,863
NAB 31,467,464 | 36,983,740 | 31,445,140
NUB 21,332,420 | 26,808,248 | 21,334,960
#full GC 40 44 40
#incr GC 14,442 14,423 20,314

Table 1: Effect of the different strategies for the unit test
benchmarks (best performance is indicated in bold)

which also result in fewer copied bytes (NCB). Oddly, the
number of incremental garbage collections is higher with S3.

Effect on the benchmark. Table 5 details the use of strat-
egy SI on the benchmark. When supporting the lazy internal
array creation without recycling arrays (Table 4), the num-
ber of unused bytes has been reduced by (82,927,120 —
82,752,904)/82,927,120 = 0.2%. The reduction of the
number of created arrays is (2,437,083 — 2,341,191)/
2,437,083 = 4%. In all, 35,063 collections have been re-
cycled. More interestingly, the technique of reusing arrays
has reduced the number of allocated bytes by 14.6% (col-
umn NAB : (128,678,564 — 109, 840, 556) /128, 678, 564 =
14.6%).

After profiling the benchmark, the number of collections
left over in the pool is rather marginal. Only 216 collections
are in the pool, totaling less than 89kB.

Using the pool of arrays incurs a relatively small execution
time penalty. This represents an increase of 5.8% of execution
time when compared with the lazy array creation and an
increase of 2.8% with the original library.

# amount of
r:g}éc;ed arrays 10
4941
3294

1647 20 40
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O
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Figure 2: Distribution of recycled arrays

Recycled arrays. The techniques described in this section re-
cycle arrays of different sizes. Figure 2 shows the distribution
of size of recycled arrays for Strategy S1. The vertical axis
indicates the number of recycled arrays. The horizontal axis
lists the size of arrays that are effectively recycled.

Arrays that are the most recycled have a size of 5 and 10.
The standard Pharo library is designed as follows: 5 corre-
sponds to the minimum capacity of hash-based collections,
and 10 is the default size of non-hashed collections’. The
value 20 corresponds to the size of the internal array of a
default collection after expansion. An array of size 40 is
obtained after a second expansion.

Multi-threading. The pool of recycled internal array is glob-
ally accessible. Accesses to the pool need to be adequately
guarded by monitors to avoid concurrent addition or removal
from the pool. Several of the applications included in our
benchmark are multi-threaded. However, the execution sce-
narios we consider are not thread-intensive. Previous work
on pooling reusable collections [18] shows satisfactory per-
formance in a multi-threaded setting.

6.2 Variation in time execution

If we consider the global figures, recycling arrays has a
penalty of 3% of execution time in the average. However,
if we have a close look at each individual benchmark, we
see that most of the performance variation indicates that
our optimized collection library performs slightly faster than
the standard collection library (in addition to significantly
reduce the memory consumption, as detailed in the previous
sections).

B Standard Optimized

9000 bPP3

bN2

Figure 3: Impact of execution time of the optimized collection
library

Figure 3 shows the variation of execution time of the
performance benchmarks between the standard collection
library and our optimized library. All but two benchmarks are
slightly faster with our library. The execution of benchmarks
bN2 takes 6,738 seconds with the standard collection library
and takes 6,789 with our library. Since this represents a
variation of (6,789 — 6,738)/6,738 = 0.7%, we consider
this variation as insignificant.

5 Note that we are not arguing whether 5 and 10 are the right default size.
Other languages including Scala and Ruby use a different default capacity
size. We are simply considering what the Pharo collection library offers to
us.



Benchmark bPP3 goes from 6,330 seconds with the
standard library to 7,010 with our optimized library, which
represents an increase of 9.7%. The reason for this drop in
performance is not completely clear to us. This benchmark
parses a massing amount of textual data. Private discussion
with the authors of the considered application revealed the
cause of this variation may be due to the heavy use of short
methods on streams. Traditional sampling profiler does not
identify the cause of the performance drop, which indicates
us that its stems from particularities of the virtual machine
(for which its execution is not captured by the standard
Pharo profiler). These short methods have an execution time
close to the elementary operations performed by the virtual
machine to lookup the message in method cache. Although
we carefully designed our execution by emptying different
caches and multiply activating the garbage collection between
each execution, the reason of the performance drop may be
related to some particularities of the cache in the virtual
machine.

By excluding the benchmark bPP3, our library performs
3.01% faster than with the standard collection library. When
considering this outlier, our performance benchmark runs
7.9% slower.

7. Setting Initial Capacities

A complementary approach to improving the collection
library is to find optimization opportunities in the base
application (which makes use of the collection library).

Example. We have noticed recurrent situations for which an
expandable collection is filled in the same method that creates
the collection. The following method, extracted from a case
study, illustrates this:

ROView>>elementsToRender
| answer |
answer := OrderedCollection new.
self elementsToRenderDo: [ :el | answer add: el |.
~ answer

The method elementsToRender creates an instance of the
class OrderedCollection and stores it in a temporary vari-
able called answer. This collection is then filled by iterating
over a set of elements.

The method elementsToRender uses the default constructor
of the class OrderedCollection, which means a default capac-
ity to the collection is given. As described in the previous
sections, such a method is a possible source of wasted mem-
ory since a view may contain a high number of elements,
thus recreating the situation we have seen with the micro-
benchmark in Section 2.1.

By inspecting the definition of the method elementsTo-
RenderDo:, We have noticed that the number of elements to
render is known at that stage of the execution. The method
may be rewritten as:

ROView>>elementsToRender
" Return the number of elements that will be rendered”

| answer |

answer := OrderedCollection new: (self elements size).
self elementsToRenderDo: [ :el | answer add: el |.

" answer

This new version of elementsToRender initializes the ordered
collection with an adequate capacity, meaning that no re-
source will be wasted due to the addition of elements in the
collection referenced by answer.

Profiling. The metrics NOSM and NSM identify meth-
ods that create a collection and fill it. The instance of
OrderedCollection created by the method elementsToRender is
counted by NSM since the collection is created and filled in
this method. The collection is also counted by NOSM in the
case that no other methods add or remove elements from the
result of elementsToRender.

We see that about 8% of the expandable collections are
immediately filled after their creation. We also notice that
slightly fewer collections are only filled in the same method in
which they were created. We are focusing on these collections
since they are likely easy to refactor without requiring a deep
knowledge about the application internals.

The NOSM and NSM metrics are computed by instrument-
ing all the constructors of expandable collection classes and
all the methods that add and remove elements.

Refactoring methods. The 204,680 collections that are filled
solely in the methods that have created them have been pro-
duced by exactly 276 methods. We have manually reviewed
each of these methods. We have refactored 105 of the 276
methods to insert a proper initialization of the expandable
collection. The remaining 171 methods were not obvious
to refactor. Since we did not author these applications and
had a relatively low knowledge about the internals of the
analyzed applications, we took a conservative approach: we
have refactored only simple and trivial cases for which we
had no doubt about the initial capacity, as in the example of
elementsToRender given above. We use unit-test to make sure
we did not break any invariant captured by the tests.

Impact on the benchmark. Table 6 details the profiling for
the benchmark by lazily creating internal arrays, reusing these
arrays and refactoring the applications. The reduction gain for
the number of allocated bytes is 0.11% (column NAB, which
goes from 109.840Mb to 109.713Mb). The amount of unused
space has been reduced by 0.12% (column NUB, which goes
from 82.752Mb down to 82.651Mb). No variation in terms
of execution time has been found.

Setting the capacity. We have run the modified version of
our benchmark with the original collection library, without
the recycling and the lazy array creation. Again, gains are
marginal. Only a reduction of 0.13% of the number of
allocated bytes has been measured.

We conclude that the obtained gain by allocating a proper
initial capacity is marginal.



8. Other programming languages

This section reviews four programming languages (Java, C#,
Scala, and Ruby) by briefly describing how collections are
handled in these and how our result may be applied to them.

Java. The Java Collection Framework is composed of 10
generic interfaces implemented by 10 classes. In addition, the
framework offers 5 interfaces for concurrent collections. We
restrict our analysis to general purpose collections, however.

Classes describing collections are very similar to Pharo’s.
For example®, the class ArrayList uses an internal array to
store elements, as OrderedCollection does. The class HashSet
wraps an instance of HashMap. HashMap uses an array of Entry
elements, each entry being an association (key, value). The
implementation of HashSet is again very similar to Pharo’s
Dictionary, with a 0.75 threshold to trigger an expansion. The
class TreeMap does not have an equivalent in standard Pharo
and uses an array to store a collection’s elements.

In Pharo we did not consider the class LinkedList since
this class is only used by the runtime and not by user-defined
applications. However, in Java, LinkedList is used more and
other collection classes are built on it, e.g., LinkedHashSet and
LinkedHashMap.

C#. ArrayList is similar to its Java sibling and Pharo’s
OrderedCollection. The C# version of ArrayList initializes
its internal array with an empty array, resulting in an im-
plementation equivalent to the lazy internal array creation
(Section 5).

Hashtable uses an internal array which is created with
the proper capacity when the class is instantiated. Hashtable
does not use an empty array as ArrayList does. The class
Dictionary and Queue do not lazy initialize its internal array
storage. Similarly to ArrayList, Stack initializes its internal
array storage with an empty list, thus triggering an expansion
at the first element addition.

Scala. Instead of simply wrapping Java collections as many
languages do when running on top of the Java Virtual Ma-
chine, Scala offers a rich trait-based collection library that
supports statically checked immutability [19] (which Java
does not support). The design of expandable collections in
Scala is similar to Java. ArrayButfer which is the equivalent
of Java’s ArrayList creates an empty array of a default size
16.

ArrayBuffer extends ResizeableArray7 utility class used by
several other collections. The private array field in that class
is called array and the logic of manipulating it is the same as
with Java’s ArrayList.

Ruby. Oddly, Ruby provides the complete implementation of

array, the most used expandable collection in Ruby, in the
virtual machine. All the arithmetic operations, copy, element

6The source code of ArrayList is visible online on

http://bit.ly/ArrayListOpenJDK6
7 https://github.com/scala/scala/blob/ master/src/library/scala/collection/-
mutable/ResizableArray.scala

addition and removing are carried out by the virtual machine.
Ruby associates to each empty collection an array of size 16.

Applicability of our results. In our experiment we have iden-
tified a significant amount of empty collections. Similar be-
havior has been found in other situations. For example, when
conducting the case studies in Java with Chameleon [6], a
high proportion of empty collections have also been identi-
fied.

The collection framework of Java®, C#, Scala, and Ruby
behave similarly to Pharo, except for the C# version of
ArrayList and Stack. We therefore expect our improvement
on the Pharo library to have a positive and significant impact
on these collection libraries. As future work, we plan to verify
assumption by modifying the standard library and running
established benchmarks (e.g., DaCapo [13]).

9. Related Work

Patterns of memory inefficiency. A set of recurrent memory
patterns have been identified by Chis et al. [12]. Overheads in
Java come from object headers, null pointers, and collections.
Three of their 11 patterns (P1, P3, P4) are about unused por-
tions internal arrays of collections. The model ContainerOr-
Contained has been proposed to detect occurrences of these
patterns.

We have proposed the lazy internal array creation tech-
nique to efficiently address pattern PI - empty collections.
Addressing pattern P3 - small collections is unfortunately
not easy. Our collection profiler identifies the provenance of
collections having an unnecessary large capacity. However
refactoring the base application to properly set the capacity
does not result in a significant impact (only a reduction of
0.13% of allocated bytes has been measured). As future work,
we plan to verify whether some patterns, depending on the
behavior of the application, may be identified (e.g., a method
that always produce collections of a same size).

Storage strategies. Use of primitive types in Python may trig-
ger a large number of boxing and unboxing operations. Stor-
age strategies [20] significantly reduce the memory footprint
of homogeneous collections. Each collection has a storage
strategy that is dynamically chosen upon element additions.
Homogeneous collections use a dedicated storage to optimize
the resources consumed by the storage.

Storage strategies may be considered as a generalization of
the lazy internal array creation described above. Our approach
focuses on reducing the memory footprint of expandable
collections, which is different, but complementary to the
approach of Bolz, Diekmann and Tratt which focuses on the
representation in memory of homogenous collections.

Discontiguous arrays. Traditional implementation of mem-
ory model uses continuous storage. Associating a continuous

8 A private discussion with some developers at Oracle indicates that an
updated version of the Collection library in JDK 7 will soon support lazy
array creation.



memory portion to a collection is known to be a source of
wasted space which leads to unpredictable performance due
to garbage collection pauses [21]. Discontiguous arrays is a
technique that consists in dividing arrays into indexed mem-
ory chunks [10, 11, 22, 23]. Such techniques are particularly
adequate for real-time and embedded systems.

Implementing these techniques in an existing virtual ma-
chine usually comes at a heavy cost. In particular, the garbage
collector has to be aware of discontiguous arrays. A garbage
collector is usually a complex and highly optimized piece of
code, which makes it it very delicate to modify. Bugs that may
be inadvertently introduced when modifying it may result in
severe and hard-to-trace crashes.

Our results show that a significant improvement may be
carried out without any low-level modification in the virtual
machine or in the executing platform. Many of our experi-
ments about memory profiling in Pharo have been carried
out having simultaneously multiple different versions of the
collection library. Nevertheless, research results about discon-
tinuous arrays, in particular Z-rays [11], may be beneficial
to expandable collections. In the future, we plan to work on
this.

Dynamic adaptation. Choosing the most appropriate col-
lection implementation is not simple. The two collections
ArrayList and HashSet are often chosen because their behav-
ior is well known, which makes them popular. Improperly
chosen collection implementation may lead to unnecessary
resource consumption. Xu [5] proposes an optimization tech-
nique to dynamically adapt a collection into the one that fits
best according to its usage (e.g., replacing a LinkedList with
an ArrayList).

Xu’s approach is similar to the storage strategies men-
tioned above, which makes it complementary to our approach.

Adaptive selection of collections. In the same line as dy-
namic adaption, Shacham ez al. [6] describe a profiler specific
to collections which outputs a list of appropriate collection
implementation. The correction can be either made automati-
cally, or presented to the programmer for correction. A small
domain-specific language is described to define rules to char-
acterize use of collections.

Recycling collections. The idea of recycling some collections
classes has been investigated in the past. For example, func-
tional languages create a new copy, at least in principle, at
each element addition or removal. Avoiding such copies has
been the topic of numerous research work [17, 24].
Recycling collections when possible is known to be ef-
fective [25]. For example, Java Performance Tuning [18],
Chapter 4, Page 79, mentions ‘“Most container objects (e.g.,
VectorsS, Hashtables) can be reused rather than created and
thrown away.” However, no evidence about the gain is given.
In the case of Pharo, recycling internal arrays of expandable
collections reduces the number of allocated bytes by 14.6%.
This chapter also argues that recycling collections is effec-
tive in a multi-threaded setting. Although our benchmarks

includes multi-threaded applications, our execution did not
make an heavy use of threads. This book chapter supports the
idea that programmers should make their collection reusable,
whenever is possible. Our work embeds this notion of recy-
cling arrays within the collection library itself.

The notion of redundant computation within loops has
been the topic of some recent work [26—28]. Efficient model
for reusing objects at loop iteration are provided. For example,
reusing collections within loop leads to a “20-40% reduction
in object churn” and “the execution time improvements
range between 6-20%.” Object churn refers to the excessive
generation of temporary objects. Our approach essentially
embeds the improvement within the collection library, which
has the advantage to not impact the programmer’s habits.
However, our performance improvement are lesser.

Adaptive collection. The Clojure programming language’
offers persistent data structures. Such data structures have
their implementation based on the usage of the internal array
storage. For example, a PersistentArrayMap is promoted to a
PersistentHashMap once the collection exceeds 16 entries.

10. Conclusion and Future Work

Expandable collections are an important piece of the run-
time. Although intensively used, expandable collections are a
potential source of wasted memory space and CPU consump-
tion.

Improving the performance of expandable collections
went through three different steps, as described in Section 5,
Section 6 and Section 7. We have defined a total of 32
executions of 17 different applications, which generate nearly
9M of expandable collections. The execution blueprint of
these collections obtained with the standard collection library
is given in Table 3. We have developed OptimizedCollection,
a collection library that supports lazy array creation and array
recycling. The execution profile of the benchmark is given
in Table 5. The positive effect of our collection is given by
contrasting Table 5 against Table 3. OptimizedCollection has:

* reduced the number of created intermediary internal array
storage by (8,701,783 — 2,341,191) / 8,701,783 = 73.09%
(column NAC)

* reduced the number of allocated bytes by (342,818,892 —
109,840,556) / 342,818,892 = 67.95% (column NAB)

* reduced the number of unused bytes by (296,863,696 —
82,752,904) / 296,863,696 = 72.12% (column NUB)

Recycling arrays incur a time penalty on the execution.
Our benchmark runs 3% faster for all but one performance
benchmark.
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bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,603 151,665(23%) 491,938(76%) 2,636 35,940 646,239 112,308(17%) 112,439(17%) 18,819,920 17,907,204
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 78,976 34,912(44%) 44,064(55%) 322 2,272 79.298 10,604(13%) 10,681(13%) 2,374,464 2,213,384
4 1,690 512(30%) 1,178(69%) 30 1,720 1,720 245(14%) 245(14%) 65,760 55.420
5 3,191 2,009(62%) 1,182(37%) 30 1,208 3,193 200(6%) 251(7%) 77.808 67,724
6 9 44(45%) 52(54%) 0 0 96 40(41%) 40(41%) 3,740 3.464
7 612 218(35%) 394(64%) 614 2,257,960 1,231 48(7%) 48(7%) 4,657,696 837,948
8 2 0(0%) 2(100%) 0 0 2 0(0%) 0(0%) 40 40
9 158,589 58,371(36%) 100,218(63%) 5,663 280,876 164,252 57,644(36%) 57,728(36%) 6,833,532 5,534,280
10 1,432,306 14,891(1%) 1,417,415(98%) 6,074 12,258,424 1,438,380 8.,248(0%) 8,344(0%) 46,958,632 34,241,204
11 6,839 2,058(30%) 4,781(69%) 1,280 78,712 6,967 471(6%) 480(7%) 291,052 256,852
12 8,363 3,530(42%) 4,833(57%) 1,103 47,852 9.466 73(0%) 73(0%) 279,236 165,460
13 108,571 57.590(53%) 50,981(46%) 1,739 369,336 109,990 8,151(7%) 8,810(8%) 5,778,016 4,845,764
14 10,305 586(5%) 9,719(94%) 145 14,044 10,448 82(0%) 110(1%) 443,828 420,352
15 20,815 14,886(71%) 5.929(28%) 255 125,900 21,070 5,736(27%) 5,740(27%) 2,692,404 1,984,240
16 766 172(22%) 594(77%) 17 496 783 123(16%) 123(16%) 126,368 122,532
17 1,203 880(73%) 323(26%) 1512 48,384 2,715 764(63%) 764(63%) 127,356 35,988
total 2,475,940 342,336(13%) 2,133,604(86 %) 21,420 15,523,124 2,495,863 204,738(8%) 205,877(8%) 89,530,320 68,692,248
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 210,000 38,000(18%) 38,000(18%) 6,752,000 6,468,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 183,000 41,000(22%) 41,000(22%) 5,928,000 5,580,000
bAST3 428,550 103,830(24%) 324.,720(75%) 2,670 28,200 431,220 87,570(20%) 87.570(20%) 13,795,440 13,212,720
bN1 150 0(0%) 150(100%) 0 0 150 0(0%) 0(0%) 3,000 3,000
bN2 180 150(83%) 30(16%) 60 9.000 240 120(66%) 120(66%) 22,440 7.680
bN3 240 240(100%) 0(0%) 60 9.000 300 180(75%) 180(75%) 22,680 7.560
bPP1 90,600 46,200(50%) 44.,400(49%) 5.600 436.800 96,200 46,200(50%) 46,200(50%) 4,214,400 3,033,600
bPP2 78,000 44.800(57%) 33,200(42%) 6,600 476,800 84,600 44,800(57%) 44.800(57%) 3,790,400 2,571,200
bPP3 546,710 398.,420(72%) 148.,290(27%) 52,860 6,475,120 599,570 398,420(72%) 398.,420(72%) 29,103,720 17,192,120
bRegl 1,000 200(20%) 800(80%) 0 0 1,000 100(10%) 100(10%) 34,400 33,600
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 2,162,860 10(0%) 10(0%) 86,513,920 84,799,800
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680 1,950,010 10(0%) 10(0%) 78,001,720 76,093,720
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 400,055 0(0%) 3(0%) 17,263,480 13,023,236
bR2 2,530 1,583(62%) 947(37%) 117 15,608 2,642 289(11%) 299(11%) 141,056 99,404
bR3 79.456 53.259(67%) 26.,197(32%) 4,809 686,196 84,073 13,365(16%) 13.454(16%) 7,701,916 6,045,808
total 6,129,207 1,637,669(26 %) 4,491,538(73%) 980,792 46,953,084 6,205,920 670,064(10%) 670,166(10%) 253,288,572 228,171,448
Total ] 8,605,147 ] 1,980,005(23%) ] 6,625,142(76%) ] 1,002,212 ] 62,476,208 ] 8,701,783 ] 874,802(10%) ] 876,043(10%) ] 342,818,892 ] 296,863,696 ]
Table 3: Original benchmark (baseline for all the other measurements)
bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,603 151,665(23%) 491,938(76%) 2,636 35,940 229,379 112,308(17%) 112,439(17%) 3,956,792 3,044,076
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 79,035 34,970(44%) 44,065(55%) 45 2,272 44,294 10,612(13%) 10,689(13%) 1,397,668 1,236,260
4 1,690 512(30%) 1,178(69%) 30 1,720 905 245(14%) 245(14%) 33,160 22,820
5 3,551 2,009(56%) 1,542(43%) 30 1,208 2,685 200(5%) 251(7%) 65,208 55.124
6 96 44(45%) 52(54%) 0 0 91 40(41%) 40(41%) 3.560 3.284
7 644 218(33%) 426(66%) 614 2.257.960 927 48(7%) 48(7%) 4,509,216 689.468
8 2 0(0%) 2(100%) 0 0 0 0(0%) 0(0%) 0 0
9 158,395 58,331(36%) 100,064(63%) 5,663 280.876 123,703 57,637(36%) 57,718(36%) 5,220,152 3,921,204
10 1,432,306 14,891(1%) 1.417,415(98%) 6,074 12,258,424 68,132 8,248(0%) 8.,344(0%) 19,547,672 6,830,248
11 6,839 2,058(30%) 4,781(69%) 1,280 78,712 2,186 471(6%) 480(7%) 109,212 75,012
12 7.870 3,472(44%) 4,398(55%) 1,094 44,384 5253 20(0%) 20(0%) 194,732 84,716
13 108,571 57.590(53%) 50,981(46%) 1,739 369,336 62,510 8,151(7%) 8,810(8%) 4,218,656 3,286,404
14 10,305 586(5%) 9,719(94%) 145 14,044 963 82(0%) 110(1%) 136,008 112,532
15 20,815 14,886(71%) 5,929(28%) 255 125,900 18.489 5,736(27%) 5,740(27%) 2,640,784 1,932,632
16 766 172(22%) 594(77%) 17 496 221 123(16%) 123(16%) 14,288 10,452
17 1,203 880(73%) 323(26%) 1,512 48,384 2.392 764(63%) 764(63%) 120.856 29.488
total 2,475,704 342,296(13%) | 2,133,408(86%) 21,134 | 15,519,656 562,143 204,686(8%) 205,822(8%) 42,168432 | 21,334,112
bASTI 210,000 38,000(18%) 172,000(81%) 0 0 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 53,000 41,000(22%) 41,000(22%) 1,016,000 668,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200 113,040 87,570(20%) 87,570(20%) 2,389,680 1,806,960
bN1 150 0(0%) 150(100%) 0 0 0 0(0%) 0(0%) 0 0
bN2 180 150(83%) 30(16%) 60 9.000 210 120(66%) 120(66%) 21,840 7.080
bN3 240 240(100%) 0(0%) 60 9.000 300 180(75%) 180(75%) 22,680 7.560
bPP1 90,600 46,200(50%) 44.,400(49%) 5.600 436,800 78,000 46,200(50%) 46,200(50%) 3,490.400 2.309.600
bPP2 78,000 44.800(57%) 33,200(42%) 6,600 476,800 70,200 44.800(57%) 44,800(57%) 3,218,400 1,999.200
bPP3 546,710 398.,420(72%) 148,290(27%) 52,860 6,475,120 543,770 398,420(72%) 398,420(72%) 26,952,320 15,040,720
bRegl 1,000 200(20%) 800(80%) 0 0 200 100(10%) 100(10%) 7.200 6,400
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 428,000 10(0%) 10(0%) 17,120,000 15,405,880
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,680 476,070 10(0%) 10(0%) 19,044,600 17,136,600
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 52 0(0%) 3(0%) 5,263,360 1,223,116
bR2 2,422 1,583(65%) 839(34%) 117 15,608 1,698 289(11%) 299(12%) 109,356 67,704
bR3 78,145 53.,259(68%) 24,886(31%) 4.809 686,196 63.400 13,365(17%) 13,454(17%) 7,034,296 5,378,188
total 6,127,788 | 1,637,66926%) | 4,490,119(73%) 980,792 | 46,953,084 | 1874940 | 670,064(10%) | 670,166(10%) 86,510,132 | 61,393,008
Total ] 8,603,492 ] 1,979,965(23%) ] 6,623,527(76 %) ] 1,001,926 ] 62,472,740 ] 2,437,083 ] 874,750(10%) ] 875,988(10%) ] 128,678,564 ] 82,727,120 ]

Table 4: Lazy internal array creation



bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,603 151,665(23%) 491,938(76%) 2,636 35,940 226,736 112,308(17%) 112,439(17%) 3,921,136 3,044,076
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 78,977 34,912(44%) 44,065(55%) 45 2,272 44,193 10,604(13%) 10,681(13%) 1,393,396 1,234,432
4 1,690 512(30%) 1,178(69%) 30 1,720 873 245(14%) 245(14%) 31,200 22,820
5 3,551 2,009(56%) 1,542(43%) 30 1,208 2,683 200(5%) 251(7%) 65,168 55,124
6 96 44(45%) 52(54%) 0 0 91 40(41%) 40(41%) 3.560 3,284
7 644 218(33%) 426(66%) 614 2,257,960 235 48(7%) 48(7%) 2,372,616 689,468
8 2 0(0%) 2(100%) 0 0 0 0(0%) 0(0%) 0 0
9 158,399 58,333(36%) 100,066(63%) 5,663 280,876 118,044 57,639(36%) 57,720(36%) 4,938,224 3,921,356
10 1,432,306 14,891(1%) 1,417.415(98%) 6,074 12,258,424 62,065 8,248(0%) 8,344(0%) 11,877,480 6,830,244
11 6,839 2,058(30%) 4,781(69%) 1,280 78,712 2,056 471(6%) 480(7%) 91,804 75,012
12 7,870 3,472(44%) 4,398(55%) 1,094 44,384 4,163 20(0%) 20(0%) 144,144 84,716
13 108,571 57.590(53%) 50,981(46%) 1,739 369,336 61,326 8,151(7%) 8,810(8%) 3,907,184 3,286,404
14 10,305 586(5%) 9,719(94%) 145 14,044 817 82(0%) 110(1%) 119,512 112,532
15 20,815 14,886(71%) 5,929(28%) 255 125,900 18,233 5,736(27%) 5.740(27%) 2,514,840 1,932,620
16 766 172(22%) 594(77%) 17 496 203 123(16%) 123(16%) 13,700 10,452
17 1,203 880(73%) 323(26%) 1,512 48,384 882 764(63%) 764(63%) 72,536 29,488
total 2,475,650 342,240(13%) 2,133,410(86 %) 21,134 15,519,656 542,613 204,680(8%) 205,816(8%) 31,466,968 21,332,420
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 428,550 103,830(24%) 324,720(75%) 2,670 28,200 110,370 87.570(20%) 87,570(20%) 2,361,480 1,806,960
bN1 150 0(0%) 150(100%) 0 0 0 0(0%) 0(0%) 0 0
bN2 180 150(83%) 30(16%) 60 9.000 153 120(66%) 120(66%) 13,400 7.080
bN3 240 240(100%) 0(0%) 60 9,000 243 180(75%) 180(75%) 14,240 7.560
bPP1 91,000 46,400(50%) 44.600(49%) 5,600 437,600 72,603 46,400(50%) 46,400(50%) 3,058,196 2,312,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800 63,604 44,800(57%) 44,800(57%) 2,743,088 2,000,000
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560
bRegl 1,000 200(20%) 800(80%) 0 0 200 100(10%) 100(10%) 7.200 6,400
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720 476,011 10(0%) 10(0%) 19,042,492 17,136,640
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 2,422 1,583(65%) 839(34%) 117 15,608 1,597 289(11%) 299(12%) 94,656 67,712
bR3 78,145 53.259(68%) 24,886(31%) 4.872 699.036 58.872 13,365(17%) 13,454(17%) 6,375,776 5,390,776
total 6,128,188 1,637,869(26 %) 4,490,319(73%) 980,165 46,941,124 1,798,578 670,264(10%) 670,366(10%) 78,373,588 61,420,484
Total 8,603,838 1,980,109(13%) ] 6,623,729(86 %) ] 1,001,299 ] 62,460,780 ] 2,341,191 ] 874,944(8%) ] 876,182(8%) ] 109,840,556 ] 82,752,904 ]
Table 5: Lazy internal array creation + reuse of array
bench. NC NNEC NEC NCE NCB NAC NOSM NSM NAB NUB
1 643,626 151,687(23%) 491,939(76%) 2,648 35,956 226,964 112,329(17%) 112,460(17%) 3,906,608 3,029,456
2 13 12(92%) 1(7%) 0 0 13 1(7%) 1(7%) 468 392
3 79,043 34,974(44%) 44,069(55%) 65 2,108 44,259 10,616(13%) 10,693(13%) 1,384,428 1,225,288
4 1,691 513(30%) 1,178(69%) 30 1,760 874 246(14%) 246(14%) 30.952 22,532
5 3,551 2,009(56%) 1,542(43%) 28 1,120 2,683 200(5%) 251(7%) 65,352 55,308
6 96 44(45%) 52(54%) 0 0 91 40(41%) 40(41%) 3.560 3,284
7 644 218(33%) 426(66%) 614 2,257,960 235 48(7%) 48(7%) 2,372,608 689,492
8 2 0(0%) 2(100%) 0 0 0 0(0%) 0(0%) 0 0
9 158,399 58,333(36%) 100,066(63%) 5,651 280,636 118,043 57,639(36%) 57,720(36%) 4,938,340 3,921,516
10 1,432,306 14,891(1%) 1,417.415(98%) 6,069 12,280,124 62,070 8,248(0%) 8,344(0%) 11,852,428 6,828,504
11 6,839 2,058(30%) 4,781(69%) 1,280 78,760 2,055 471(6%) 480(7%) 91,812 75,064
12 7.870 3,472(44%) 4,398(55%) 1,095 46,236 4,163 20(0%) 20(0%) 145,360 86,528
13 108,571 57.589(53%) 50,982(46%) 1,683 367,164 61,330 8,150(7%) 8,809(8%) 3,865,908 3,245,964
14 10,305 586(5%) 9,719(94%) 145 14,044 819 82(0%) 110(1%) 120,872 112,660
15 20,815 14,886(71%) 5.929(28%) 255 125,900 18,233 5,736(27%) 5,740(27%) 2,514,084 1,932,656
16 766 172(22%) 594(77%) 14 376 202 123(16%) 123(16%) 12,488 9,428
17 1,203 880(73%) 323(26%) 0 0 880 764(63%) 764(63%) 72,472 29,488
total 2,475,740 342,324(13%) 2,133,416(86 %) 19,577 15,492,144 542,914 204,713(8%) 205,849(8%) 31,377,740 21,267,560
bAST1 210,000 38,000(18%) 172,000(81%) 0 0 47,000 38,000(18%) 38,000(18%) 820,000 536,000
bAST2 179,000 47,000(26%) 132,000(73%) 4,000 24,000 49,002 41,000(22%) 41,000(22%) 992,012 668,000
bAST3 428,550 103,830(24%) 324.,720(75%) 2,670 28,200 110,370 87.570(20%) 87,570(20%) 2,329,080 1,774,560
bN1 150 0(0%) 150(100%) 0 0 0 0(0%) 0(0%) 0 0
bN2 180 150(83%) 30(16%) 60 9,000 154 120(66%) 120(66%) 11,280 4,920
bN3 240 240(100%) 0(0%) 60 9,000 244 180(75%) 180(75%) 12,120 5.400
bPP1 90,600 46,200(50%) 44.400(49%) 5,600 437,600 72,403 46,200(50%) 46,200(50%) 3,057,396 2,312,800
bPP2 78,000 44,800(57%) 33,200(42%) 6,600 476,800 63,604 44.800(57%) 44.,800(57%) 2,743,088 2,000,000
bPP3 546,710 398,420(72%) 148,290(27%) 52,170 6,449,480 490,915 398,420(72%) 398,420(72%) 20,488,808 15,051,560
bRegl 1,000 200(20%) 800(80%) 0 0 200 100(10%) 100(10%) 7,200 6,400
bReg2 2,162,830 427,970(19%) 1,734,860(80%) 427,950 17,118,080 427,970 10(0%) 10(0%) 17,119,200 15,405,880
bReg3 1,949,950 476,010(24%) 1,473,940(75%) 476,020 19,042,720 476,011 10(0%) 10(0%) 19,042,492 17,136,640
bR1 400,011 7(0%) 400,004(99%) 46 2,631,600 38 0(0%) 3(0%) 5,243,040 1,023,116
bR2 2,422 1,583(65%) 839(34%) 117 15,608 1,597 289(11%) 299(12%) 94,616 67,672
bR3 78,145 53.259(68%) 24.886(31%) 4,872 699,036 58,872 13,365(17%) 13,454(17%) 6,375,736 5,390,736
total 6,127,788 | 1,637,66926%) | 4,490,119(73%) | 980,165 | 46,941,124 | 1,798,380 | 670,064(10%) | 670,166(10%) 78,336,068 | 61,383,684
[ Total ] 8,603,528 ] 1,979,993(23%) ] 6,623,535(76%) ] 999,742 ] 62,433,268 ] 2,341,294 ] 874,777(10%) ] 876,015(10%) ] 109,713,808 ] 82,651,244 ]

Table 6: Lazy internal array creation + reuse of array + code refactoring
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