
Live Programming the Lego Mindstorms

Johan Fabry Miguel Campusano
PLEIAD and RyCh Laboratories

Computer Science Department (DCC)
University of Chile

{jfabry,mcampusa}@dcc.uchile.cl

Abstract
Development of software that determines the behavior of
robots is typically done in a language that is far from dy-
namic. Programs are written, compiled, and then deployed
on a simulator, or the robot, for testing. This long devel-
opment cycle causes a cognitive dissociation between writ-
ing the code for the robot and observing the robot in ac-
tion. As a result, writing robot behaviors is much more dif-
ficult than it should be. In contrast, live programming pro-
poses an extraordinary tightening of the development cy-
cle, yielding an immediate connection between the program
and the resulting behavior. To achieve live programming for
robot behaviors, we designed and implemented the LRP lan-
guage. In this paper we show how LRP interfaces with the
Lego Mindstorms EV3, report on experiences programming
Lego robots, and discuss how salient features of the language
were made possible thanks to its implementation in Pharo
Smalltalk.

1. Introduction
The origins of live programming can be traced back to the
early work of Tanimoto on Viva [12]. It states that “A live
system begins the active feedback at editing time, and then
continues it through the remainder of the session or until ex-
plicitly disabled by the user.” Such live programming allows
programmers to benefit from an immediate connection with
the program that they are making. This is because the de-
velopment cycle is extremely tight and there is no cognitive

[Copyright notice will appear here once ’preprint’ option is removed.]

dissociation between writing the code and observing its ex-
ecution.

In our research we aim to bring the advantages of live
programming to programming of robots, more specifically
the behavior layer. The behavior layer is the part of the soft-
ware of the robot that acts on processed inputs to realize spe-
cific actions of the robot, i.e. its behavior. Typically, such
behavior is written in a language that is far from dynamic,
compiled, and then deployed on a simulator (or the robot it-
self) for testing. In this long cycle the cognitive distance be-
tween the program and the resulting robot behavior is vast,
resulting in a high degree of difficulty of getting these be-
haviors to work well. For example, it is frequently the case
that the programmer observes the robot (or the simulation)
performing some specific movement and it is totally unclear
why this movement is happening. With live robot program-
ming this cognitive distance almost disappears. This is be-
cause the development environment includes a visualization
of program execution that transparently updates on each pro-
gram change, in addition to the execution being reflected in
the robot simulator or even on the running robot itself.

To allow live programming of robot behaviors we have
developed the Live Robot Programming (LRP) language.
This language is based on the nested state machine paradigm,
as this paradigm has proven to be well-suited to define robot
behaviors [8, 14]. LRP is designed from the onset to be
a live programming language, and as such comes with its
own state machine interpreter and visualization of existing
machines. The language is not hardcoded to a specific robot
platform, instead relying on bridging software to access spe-
cific robot APIs.

In this paper we show how LRP enables live program-
ming of the Lego Mindstorms EV3 robot platform through
JetStorm [7], report on our experiences programming the
Mindstorms in LRP, and discuss specific points of the im-
plementation of LRP that were facilitated largely by the lan-
guage features and infrastructure present in Pharo Smalltalk.

This paper is structured as follows: the next section gives
a brief overview of the LRP language, using an example

1 2014/8/8

behavior that also serves to illustrate elements of the rest of
the paper. Section 3 reports on the bridge to the Mindstorms
and our experience in using it to program robot behaviors.
Following this, Section 4 highlights specific elements of
Pharo Smalltalk that made the implementation possible. The
paper then presents related work, future work and concludes.

2. The LRP Language
Live Robot Programming (LRP) is a live programming,
nested state machine based language with an associated in-
terpreter and visualization, implemented in Pharo. The fea-
tures of LRP are designed for robot programming, yet the
language is not hardcoded to a specific robot platform. LRP
enables the use of APIs of specific robot platforms and as
such comes with bridges towards the Robot Operating Sys-
tem (ROS) [5], and now also to the Mindstorms EV3 [13]
through JetStorm [7], as will be discussed in Section 3.

A complete description of LRP is outside of the scope of
this paper, we only give a brief overview of its features here,
and refer to its website http://pleiad.cl/LRP and other
published work [4] for more details.

The main language features of LRP are:

• Machines with states and different kinds of transitions.
• Transitions that can occur on events, occur after a timeout

or occur automatically after a state is entered.
• Events are explicitly defined and trigger if their included

piece of code, called an action, evaluates to true.
• States can have actions that are run when entering the

state, leaving the state, or when the state is active.
• States can define state machines, which enables nesting.
• Machines can define variables, and these are accesible

inside actions if the variable is lexically in scope.

LRP has its own language syntax and the interpreter is,
in essence, a plain state machine interpreter that consumes
the ASTs of the program and provides the standard nested
state machine semantics. The only remarkable element is
that actions are actually Smalltalk blocks that are compiled
after the program is parsed. This process is discussed in
Section 4.1.

To show the syntax of the language, clarify how it allows
for robot programming on the Mindstorms and provide ex-
ample material for Sections 3 and 4, we now show and dis-
cuss the code for a simple behavior. The behavior is a simple
space exploring behavior where the robot goes forward until
it encounters a wall, where it backs up, turns a bit, and again
goes forward. This behavior is ment to run on a differential-
drive robot1 with the (ultrasonic) distance sensor pointing
forward and a touch sensor on both front corners. An ex-

1 Typically a tricycle that has 2 driven wheels, each with its own motor, and
the third wheel being a caster

WiFi
Dongle

Touch
Sensors

Ultrasonic
Sensor

The
“Brick”

Right driven
wheel

Caster
(hidden)

Left driven
wheel

Figure 1. The Lego Mindstorms robot of the explorer be-
havior example.

ample of such a robot constructed using the Mindstorms is
shown in Figure 1.

The first part of the code, below, takes care of connecting
the program to the Mindstorms by reifying the different
motors and sensors as variables:

1 (var motA := [LRPEV3Bridge motorA])
2 (var motB := [LRPEV3Bridge motorD])
3 (var u l t r a := [LRPEV3Bridge s e n s o r 3])
4 (var r i g h t t o u c h := [LRPEV3Bridge s e n s o r 1])
5 (var l e f t t o u c h := [LRPEV3Bridge s e n s o r 4])

Five variables are declared and immediately initialized,
which is mandatory. In LRP, code between square brackets
are actions, i.e. Smalltalk blocks. The class LRPEV3Bridge
is a facade class responsible for connection to the Mind-
storms and making the different sensors and motors avail-
able. This is in essence how LRP code interacts with specific
robot platforms: reifying relevant elements as variables and
subsequently interacting with these variables in actions, i.e.
in Smalltalk code.

With the variables defined, the definition of the state
machine for the behavior starts as below. The machine is
called Dora (for Dora the Explorer), and initially defines two
states and two transitions:

6 (machine Dora
7 (s t a t e f o r w a r d
8 (onentry
9 [motA v a l u e s t a r t A t S p e e d : 5 5 .

10 motB v a l u e s t a r t A t S p e e d : 5 5 .])
11 (o n e x i t [motA v a l u e s t o p . motB v a l u e s t o p]))
12 (s t a t e l o o k i n g)
13 (ontime 600 f o r w a r d −> l o o k i n g t−l ook)
14 (ontime 120 l o o k i n g −> f o r w a r d t−f o r w a r d)

2 2014/8/8

Lines 7 through 11 specify the forward state. The block
in lines 9 and 10 is executed whenever this state is entered.
As it represents the robot moving forward, both motors are
started at 55% of top speed. The block in line 11 is executed
whenever the robot leaves the forward state and therefore
stops both motors. The looking state in line 12 does not
define any actions.

Note that both blocks use the motor variables defined
in lines 1 and 2, and always send them the value mes-
sage first. This is because all variables are in fact Smalltalk
ValueHolders, as we will discuss in Section 4.2.

Lines 13 and 14 show two timeout transitions. The num-
bers given in the transitions specify a timeout in millisec-
onds, starting from when the source state is entered, and trig-
ger after the timeout is reached. The text of the remainder of
the transition specifies, respectively source state, destination
state, and transition name.

With this code in place, the robot alternates between
moving forward for 0.6 seconds, and then waiting for 0.12
seconds. In those 0.12 seconds the three different sensors
are polled (which takes a bit less than 0.12 seconds), as is
defined in the next three lines of code:

15 (event w a l l [u l t r a v a l u e r e a d < 20])
16 (event r i gh tbump [r i g h t t o u c h v a l u e r e a d = 1])
17 (event l e f t b u m p [l e f t t o u c h v a l u e r e a d = 1])
18 (on w a l l l o o k i n g −> backup t−backup)
19 (on r i gh tbump l o o k i n g −> backup t−r t−backup)
20 (on l e f t b u m p l o o k i n g −> backup t−l t −backup)

Lines 15 through 17 define events. The interpreter will
evaluate the actions for these events only if triggering these
events can cause a transition to occur. In this case, the transi-
tions on line 18 through 20 may occur as they start from the
looking state and go to a backup state, defined below.

In summary: if none of the events trigger, the robot goes
to the forward state, otherwise it goes to the backup state.

21 (s t a t e backup
22 (onentry
23 [motA v a l u e s t a r t A t S p e e d : −32.
24 motB v a l u e s t a r t A t S p e e d : −32.])
25 (o n e x i t [motA v a l u e s t o p . motB v a l u e s t o p]))
26 (ontime 300 backup −> t u r n t−t u r n)
27 (s t a t e t u r n (onentry
28 [motorA v a l u e s t a r t A t S p e e d : −32.
29 motorB v a l u e s t a r t A t S p e e d : 3 2 .])
30 (o n e x i t [motA v a l u e s t o p . motB v a l u e s t o p]))
31 (ontime 700 t u r n −> f o r w a r d t−t f o r w a r d)
32)
33 (spawn Dora f o r w a r d)

The above backup, and turn states, together with the
t-turn and t-tforward transitions implement the behav-
ior of backing up, turning around, and resuming moving for-
ward. The last line of code specifies that the Dora machine
should be started by the interpreter and that its initial state
is forward. This spawn statement also can be used as an
action in an onentry of a state, which means that when this
state is entered the specified machine should be interpreted.

This code is sufficient for implementing the explorer be-
havior. When editing this code in LRP, the interpreter is al-
ways running and updating the interpreted machine while
the programmer types, and moreover the LRP window,
shown in Figure 2, displays the tree of current machines, the
contents of variables, and a visualization of the machine. The
visualization highlights the currently active state (looking
in the figure) and the last taken transition. Also, variables
can be inspected and their values set.

3. Bridging LRP to Robot Hardware:
Controlling the Mindstorms

LRP is at its core a live programming language for nested
state machines. It is implemented in Pharo, using Petit-
Parser [10] as the parser generator, Roassal2 [2] for the vi-
sualization of the state machines, and Spec [11] to build the
user interface.

The language features have been designed with the use
as a robotics behavior layer in mind, yet the language it-
self does not have any intrinsic robotics support. This re-
sponsibility instead lies on bridging software that spans the
gap to specific robot platforms. Currently, LRP comes with
a bridge to ROS [5], and the Lego Mindstorms EV3 [13] via
JetStorm [7]. In this section we present the latter and discuss
a practical issue we faced programming the Mindstorms.

3.1 Hard- and Software
The Lego Mindstorms EV3 [13] is the third iteration of the
Lego Mindstorms line. The embedded system of the set is
called the brick, and it features an 300 Mhz ARM9-based
processor, 64MB of RAM which runs Linux 2.6.x. The sen-
sor package (in the education version) is an ultrasound dis-
tance sensor, two touch sensors, a color sensor and a gyro-
scopic sensor. Three motors are supplied, each motor with a
built-in rotation sensor. Last but not least, a comprehensive
set of Lego bricks are included, enabling the speedy con-
struction of a wide variety of robot hardware.

The brick also includes an USB port, and support for one
specific WiFi dongle, which allows the robot to be remote-
controlled via WiFi. JetStorm [7] is a Pharo package that
allows for the remote control of the EV3 by reifying the
brick, sensors and motors as Smalltalk objects that can be
sent messages. For example, sending the startAtSpeed:

55 message to a motor object causes a command to be sent
to the brick to start the corresponding motor at 55% of the
top speed the motor is capable of.

The LRP Mindstorms bridge currently consists of a fa-
cade class LRPEV3Bridge that is placed in front of JetStorm.
This class provides features for connecting to the brick over
IP and retrieving the various sensors and motors connected
to the brick. The latter is shown in lines 1 through 5 of the
example program. If there is no IP connection to the brick
when a sensor or motor is retrieved, the user is prompted
for the IP address of the brick and a connection is set up.

3 2014/8/8

Figure 2. The LRP editor showing part of the example of this text: the Dora machine.

The various sensors and motors that are retrieved are objects
provided by JetStorm, no facade is placed in front of them.

In our experience, the one, minimal, facade class has
proven to be sufficient to allow small experiments with the
Mindstorms. We are however faced with the situation that
LRP may grow to have multiple bridges to many different
robot API’s. For example the API to ROS is quite different.
It requires movement vectors to be sent, and their interpre-
tation by the robot eventually causes the respective motors
to operate. A wide disparity in how these APIs are exposed
to LRP programmers will cause a tight coupling of LRP
programs to a specific API and prohibit reuse of behaviors
across robot platforms, effectively splintering the language
in different versions for different APIs. It would therefore be
beneficial to have at least some basic uniformity of the API
that the different LRP bridges expose, at least when consid-
ering the lowest common denominator of the APIs. Conse-
quently this could possibly require the EV3 Bridge facade
to increase in complexity, translating the common API calls
to JetStorm calls. We consider the study of such a common
API as future work.

3.2 Experience Report: The Issue of Lag
Live Programming of the Lego Mindstorms is a very satis-
fying experience. It is possible to quickly prototype reason-
ably complex behaviors, while benefitting from the immedi-
ate feedback that live programming brings. We are able to
change the behavior of a robot while it is running and active
in its environment, and the visualization of the state machine
allows us to immediately establish in which state the robot is
and how it got there. There is only one negative point in the

entire experience, and that is the presence of network lag on
robot commands.

Sending commands from a computer to the brick over the
network and waiting for a reply causes a notable delay in
interactions of the LRP interpreter with the robot. Informal
microbenchmarks have shown us that it takes approximately
30 microseconds for a sensor read operation to return the
sensor’s value, and the same time to instruct a motor to start.
While this time lag may seem negligible, this turns out not
to be the case. For example, in line 15 to 17 of the example
code, three sensors are polled, which therefore takes approx-
imately 120 microseconds. This is a noticeable delay, and a
time in which the robot may advance a significant distance.
For the example the distance traveled in that time is 5 cm,
with the motors at 55% of top speed.

It is exactly because of this delay that the Dora behavior
is structured in a moving and a looking phase. The robot
first moves for a distance that is deemed ‘safe’, and then
stops to verify if the wall is too close. This results in a
stuttering behavior of the robot that is quite noticeable. If
reading sensors were immediate, there would be no need
for a looking state: the robot would continuously poll the
sensors for their data. As a result the robot would not stutter
and be able to explore at a higher overall speed.

We have experience with programming robots on the pre-
decessor of the EV3, having software run on the brick it-
self by using the leJOS [6] Java to NXT cross-compiler.
While the old brick has significantly inferior hardware, this
setup is orders of magnitude more responsive, resulting in
robot behaviors that are much more fluid and faster. Con-
sequently, Dora-like behaviors for example can be executed
much faster. Note that these experiments were in Java code

4 2014/8/8

and hence did not suffer from any overhead of the LRP in-
terpreter. The overhead of LRP is however almost negligible:
in informal tests, the overhead for evaluating events and ex-
ecuting state transitions has been benchmarked to be around
one millisecond.

Ideally the robot behavior software would therefore run
locally on the EV3 itself. There is however, as yet, no sup-
port in Pharo for running on the EV3. As a point of reference,
only recently (April 2014) has the first beta release of leJOS
on the EV3 been made available. We have not yet been able
to experiment with it, nor do we have the resources required
to reimplement the LRP interpreter in leJOS.

4. Implementing LRP
The interpreter of LRP is at its core a plain interpreter imple-
mentation for nested state machines, extended in two ways
for live programming [4]. First it is robust with respect to
incomplete programs and keeps on executing in the face of
errors. Second it is able to modify the state machine while
it is running, adding and removing elements without always
requiring a restart.

There are two pieces of the implementation of the in-
terpreter that we discuss here, as they show how the use
of Smalltalk has aided us in its implementation, what are
limitations due to the implementation and how we plan to
address them. These two elements are compilation of the
blocks and variables as ValueHolders.

4.1 Compiling the Blocks
Actions are used to connect LRP to the API of the specific
robot platform. They also may need to perform any kind of
computation on sensor inputs and the state of variables to
establish whether events occur, and hence may also need
to update variables at some point. As a result we found
it a natural choice to allow actions to have the full power
of Smalltalk available and hence have them be Smalltalk
blocks.

Having actions as blocks however raises issues of per-
formance. While the behavioral layer is not a time-critical
element in the software of the robot, it does form part of a
computation chain that goes from sensor readings up to ac-
tuator actions. As such, any overhead that it adds in this pro-
cess does have effect on the performance of the robot. For
this reason, we decided that the overhead of executing ac-
tions must be minimal. Hence, in the interpreter actions are
compiled blocks: to run them only the value message needs
to be sent.

Parsing in LRP is performed by PetitParser [10], and
action blocks are also parsed, using the Smalltalk parser
that is part of PetitParser. As a result, when the interpreter
is passed the AST of the state machine to interpret, these
blocks have the form of ASTs. The interpreter traverses
the complete AST for the program and compiles all action
blocks. The result of the compilation of an action block is

a BlockClosure that has references to all the variables in
scope and hence just needs to be sent the value message to
execute.

The process of compiling the AST of an action block is
as follows:

1. a Dictionary is created of all variables in scope, taking
into account shadowing of variables.

2. Text for the signature for a method is created of the form
captureV:V:V:, taking as many V: arguments as the
number of variables in the dictionary.

3. The names of the parameters of this signature are the keys
in the dictionary. In the body of the method, the LRP
variables are hence in scope of the Smalltalk code.

4. The signature is appended with the string ’^ [1]’ and
this complete method definition string is parsed.

5. In the resulting AST method, the subtree for ’[1]’ is
swapped with the AST of the block to compile.

6. This method AST is compiled.

7. The resulting method is invoked, passing it the values
of the variables in the correct order. This causes the
BlockClosure to capture variable references such that
they may be used inside the code of the action.

For example, let us consider the onentry block of lines 9
and 10 of the Dora example. The result of step 5 is the AST
for the following:

1 c a p t u r e V : motB V: u l t r a V: r i g h t t o u c h
2 V: motA V: l e f t t o u c h
3 ˆ [motA v a l u e s t a r t A t S p e e d : 5 5 .
4 motB v a l u e s t a r t A t S p e e d : 55]

Step 6 yields a CompiledMethod for the above, i.e. a
method whose execution returns the BlockClosure that
corresponds to the action (lines 3 and 4). In step 7, this
method is invoked with as arguments the values of the vari-
ables motB, ultra, righttouch, motA, lefttouch. The
returned BlockClosure has hence captured the references
for the variables it uses (motA and motB). This allows the
action to be executed by simply sending the value message
to this BlockClosure.

The compilation of action blocks has turned out to be
quite straightforward to implement, taking only about 20
lines of code (of arguably low complexity). We consider that
being able to achieve such a complex task so succinctly is a
testament to the power and flexibility of Pharo Smalltalk.

There are however two downsides to the current imple-
mentation. Firstly, the method that is compiled has no class
and an incorrect source code pointer. In our experience this
has caused issues when programming: the block cannot be
printed, the debugger does not work correctly and in some
cases even primitive error handling fails, causing Pharo to
crash. An important avenue of future work is to improve
the compilation process such that these issues are addressed.

5 2014/8/8

Secondly, methods can only take up to 16 arguments. Conse-
quently, if there are more than 16 arguments in scope, com-
pilation of the action block fails. A possible mitigation of
this issue would be to perform a semantic analysis of the
block to establish which variables are effectively used inside
the block and only pass these as arguments in step 2,3, and
7 above. We also consider this as future work.

In summary We were able to incorporate the full power
of an OO language in our state machine-based language
thanks to the fact that we have straightforward access to the
following:

• a parser of Smalltalk expressions that produces ASTs,
• ASTs of methods allowing for their compilation at run-

time, isolated from a class definition,
• blocks that capture the arguments of their enclosing

method when they are created.

4.2 LRP Variables are ValueHolders
In LRP, variables are key to interact with specific robot plat-
forms. This is because they are used to reify API elements
from these platforms and the code in actions interacts with
these elements. For example, in the Dora example above, ac-
tions start and stop motors and poll sensors. Variables how-
ever serve as more than that, and this can be already seen in
the Dora example. The example contains many magic num-
bers, e.g. motor speeds, minimal wall distance (in line 15),
and timeouts for the different transitions. All these numbers
can (and actually should) be replaced by the use of vari-
ables, turning these magic numbers into robot calibration
constants. Beyond cleaning up the code, this has as conse-
quence that they can then be modified in the LRP editor
while the program runs, effectively recalibrating the robot
as it runs. Lastly, if the turning time on line 31 would be a
variable, it could contain a random number that is set ev-
ery time a turn is about to begin. This randomizes the turns,
making the exploring behavior immune to being stuck in a
loop. Because all of the above reasons, variables must truly
be mutable.

Yet these variables are used by three different entities:
the original program AST that contains the result of vari-
able initialization, the LRP editor, and the different actions
that use these variables. Recall that these blocks get passed
these variables by reference when they are constructed, as
discussed in Section 4.1. As a consequence, any change to
the values of variables is invisible to these blocks! This is be-
cause changes to the values do not affect the references that
were passed to the blocks as they were constructed. Hence
variables may not be changed.

To address the issue that values of variables may not be
changed yet at the same time they must be mutable, we have
made use of ValueHolders. Every variable is a ValueHolder
that contains the value. This however entails that reading the
value of a variable requires sending the value message to

the variable, and setting the value of a variable is using the
value: message instead of normal assignment.

Our experience has shown in practice that in the begin-
ning of writing LRP code it is easily forgotten that vari-
ables are ValueHolders, leading to widespread errors in
behaviors. Such errors are however quickly revealed: sim-
ple variable accesses usually already cause problems as the
ValueHolder class implements few messages. We are plan-
ning transparent use of ValueHolders, i.e. not requiring the
use of the value and value: messages, as future work. We
have first considered source code manipulation of the code
in the block to automatically transform accesses and modi-
fications to the use of this messages. This however does not
address the issue of the variables being used and modified
outside of the block, e.g. when they are passed as method
parameters. A second possible path would be to try the new
Slots mechanism. We would have variables as slot instance
variables of a purpose-built class. The slot reading and writ-
ing mechanism would then implement the extra indirection
that is currently achieved by the ValueHolders. As the Slots
mechanism has not been fully implemented its suitability is
however yet to be determined.

In summary We required the use of a double indirection
to be able to have mutable variables, and the ValueHolder

mechanism has shown to be a fitting solution. Requiring the
use of value and value: messages in actions is however
suboptimal, and we are planning solutions to this issue.

5. Related Work
Considering robot behaviors using nested state machines,
two languages and tools are well-known: The Kouretes Stat-
echart Editor (KSE) [14] and XABSL [8]. In KSE state ma-
chines are graphically edited, with an option to start from a
text-based description. The tool then follows a model-driven
process to generates the executable code for these machines.
XABSL is text-based, using an XML representation of the
state machines. A variety of support tools are present, for
example, a tool that creates (static) diagrams of the machine.

None of the languages above provide any support for live
programming, and the live programming languages below
do not consider state machines as their computational model.

Live programming was first proposed by Tanimoto [12].
The language presented in that work is VIVA, a visual pro-
gramming language for image manipulation. More recently,
McDirmid proposed the SuperGlue language [9], based on
dataflow programming and extended with object-oriented
constructs. Live programming of the UI has been proposed
by Burckhard et al. [3], by adding specific features for live
UI construction to an existing programming language. The
keynote of Victor [15] shows multiple live programming
examples in Javascript, producing pictures, animations and
games. A recent addition to live programming is the Swift
language by Apple [1], which allows for live programming
in specific workspaces called Playgrounds.

6 2014/8/8

6. Conclusion and Future Work
In this paper we have reported on our first experiences of
writing Live Robot Programming (LRP) programs for the
Mindstorms EV3, and detailed how some of the features of
Pharo Smalltalk allowed us to accomplish its implementa-
tion.

We first gave a brief overview of LRP through the use of
an example program. The program implements a space ex-
ploration behavior on a differential drive robot constructed
using the Mindstorms (illustrated in Figure 1). We then dis-
cussed the LRP bridge to the Mindstorms. LRP allows for
the live programming of robot behaviors, yet is not linked
to a specific robot platform, instead relying on such bridg-
ing software. This was followed by an experience report that
focused on how the lag in sending commands to the EV3
negatively impacts robot performance. We then discussed
how specific features of Smalltalk have aided in the con-
struction of the LRP interpreter, more specifically the pars-
ing and AST manipulation and compilation support, blocks
and ValueHolders.

There are multiple avenues of future work, which we have
discussed in some detail along this text. In summary, these
avenues consist of the study of a minimal common API for
the bridges to different robot platforms, improvements of the
compilation process of action blocks, and elimination of the
ValueHolder messages for variables.

In our experience, live programming for robot behaviors
yields an order of magnitude faster development time, and is
a key enabler of fast prototyping of and experimentation with
behaviors. Lastly, without the language features of Smalltalk
and all the infrastructure available in Pharo its implementa-
tion would have been much more demanding, if not impos-
sible, to realize with the resources at our disposal.

More Information, Availability
The home page of LRP is http://pleiad.cl/LRP The
implementation of the language is open source, MIT license,
and download instructions are on its home page.

References
[1] Apple, inc. Introducing swift.

https://developer.apple.com/swift/.

[2] Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and
Jannik Laval. Deep Into Pharo. Square Bracket Associates,
2013.

[3] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux,
Sean McDirmid, Michal Moskal, Nikolai Tillmann, and Jun
Kato. It’s alive! continuous feedback in ui programming.
In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’13, pages 95–104, New York, NY, USA, 2013. ACM.

[4] Johan Fabry and Miguel Campusano. Live robot program-
ming. In Ana Bazzan and Karim Pichara, editors, Advances

in Artificial Intelligence - IBERAMIA 2014, number 8864 in
Lecture Notes in Computer Science. Springer Verlag, 2014.

[5] Open Source Robotics Foundation. ROS.org: Powering the
world’s robots. http://www.ros.org.

[6] The leJOS Group. leJOS: Java for LEGO mindstorms.
http://www.lejos.org/.

[7] Jannik Laval. Jetstorm - a communication protocol between
Pharo and Lego Mindstorms. Technical Report 140616,
Mines-Telecom Institute, Mines Douai, jun 2014.

[8] Martin Lötzsch, Max Risler, and Matthias Jüngel. XABSL - A
pragmatic approach to behavior engineering. In Proceedings
of IEEE/RSJ International Conference of Intelligent Robots
and Systems (IROS), pages 5124–5129, Beijing, China, 2006.

[9] Sean McDirmid. Living it up with a live programming lan-
guage. In Proceedings of the 22Nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and
Applications, OOPSLA ’07, pages 623–638, New York, NY,
USA, 2007. ACM.

[10] Lukas Renggli, Stéphane Ducasse, Tudor Gı̂rba, and Oscar
Nierstrasz. Practical dynamic grammars for dynamic lan-
guages. In 4th Workshop on Dynamic Languages and Ap-
plications (DYLA 2010), Malaga, Spain, June 2010.

[11] Benjamin Van Ryseghem, Stphane Ducasse, and Johan Fabry.
Seamless composition and reuse of customizable user inter-
faces with spec. Science of Computer Programming, (0),
2014. In Press.

[12] Steven Tanimoto. VIVA: A visual language for image
processing. Journal of Visual Languages & Computing,
1(2):127–139, June 1990. http://dx.doi.org/10.1016/S1045-
926X(05)80012-6.

[13] The LEGO group. LEGO MINDSTORMS Education EV3.
https://education.lego.com/mindstorms.

[14] Angeliki Topalidou-Kyniazopoulou, Nikolaos I. Spanoudakis,
and Michail G. Lagoudakis. A case tool for robot behavior
development. In Xiaoping Chen, Peter Stone, LuisEnrique
Sucar, and Tijn Zant, editors, RoboCup 2012: Robot Soccer
World Cup XVI, volume 7500 of Lecture Notes in Computer
Science, pages 225–236. Springer Berlin Heidelberg, 2013.

[15] Bret Victor. Inventing on principle. Invited Talk
at CUSEC’12, 2012. Video recording available at
http://vimeo.com/36579366.

7 2014/8/8

