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Abstract

Most of today’s general-purpose programming languages in-
clude primitives for concurrent and parallel software devel-
opment. However, they fail to provide mechanisms for rea-
soning about the complex interactions of the systems com-
ponents. Amongst different formalisms, used for capturing
the emerging and intricate characteristics of concurrent and
parallel systems, the logical time model is widely used and
proved useful in hardware, embedded and distributed sys-
tems domains.

In this study, we propose a meta-described clock-constraint
engine, which embeds a formal model of logical time into
the Smalltalk general-purpose language and environment.
This engine, named ClockSystem, relies on the primi-
tives provided by Clock Constraint Specification Language
(CCSL) to provide a simple yet powerful toolkit for logical
time specifications. ClockSystem extends the CCSL lan-
guage, through an automata-based approach, with domain-
specific user-defined operators and provides an embedded
DSL for writing executable specification in a language close
to the abstract CCSL notation.

The approach is symbiotic and benefits from the com-
plementarity of the two languages. CCSL gains a readable
syntax for library specification and the power of a highly
dynamic general-purpose language and development envi-
ronment. The Pharo Smalltalk environment acquires a very
expressive time reasoning formalism, which promises im-
proved software quality through formal verification and
highly automated testing and monitoring strategies.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications—Languages; D.2.4
[Software Engineering]: Software/Program Verification—
Model checking
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1. Introduction

In the context where multi-core heterogeneous computing
became ubiquitous, and more and more support for concur-
rent and parallel applications is offered by todays program-
ming languages. All application designers are faced with
challenges that were once specific to the hardware, embed-

ded or distributed domains. Amongst these challenges, there
is the need to reason about time to create different levels of
consensus between concurrent and parallel execution threads
that have to communicate, to synchronise or to access shared
external resources.

In the computer-science literature, different interpreta-
tions of time are studied, each one addressing particular as-
pects of the “real” time, which is known also as physical
time. Amongst these interpretations, the logical clock model,
introduced by L. Lamport [14], abstracts the notion of phys-
ical time to the partial order of events. This theory of logical
time evolved since its beginnings, and today it is widely used
in the hardware, embedded and distributed systems theory
and practice.

General-purpose programming language, in their stan-
dard settings, offer a large variety of models, techniques
and primitives to address concurrent and parallel program-
ming. However, they fail to provide a mechanism for “’time-
aware” modeling, which proved very useful in these other
disciplines of computer science and engineering.

Moreover, it is interesting to see that even the relatively
young field of Model-Driven Engineering (MDE) recog-
nised the importance of time and integrated it through the
Clock Constraint Specification Language (CCSL) [1] in the
UML Marte profile [20], which targets critical system mod-
eling.

The CCSL formalism departs from the traditional ap-
proaches by offering a simple yet powerful logical time spec-
ification formalism, through a declarative domain-agnostic
language. This formalism is integrated in the MDE infras-
tructure and tools through the TimeSquare toolkit [7] which
provides a concrete-syntax for the CCSL language and a set
of analysis tools targeting it, eg. simulator, model-animator.
However, while the TimeSquare toolkit delivers powerful
tools for system design and analysis it fails to offer a simple
and readable syntax for specifying domain-specific libraries
on top of CCSL. Moreover, the development efforts behind
the TimeSquare toolkit are geared towards MDE users and
besides offering the possibility to execute java code associ-
ated with clock events, it seems to lack an API for embed-
ding CCSL specifications in Java, its implementation lan-
guage [7].



In this study we introduce a meta-described clock con-
straint engine, named CLOCKSystem, which addresses these
problems by providing an embedding of the logical time for-
malism in the Smalltalk object-oriented and general-purpose
programming language and environment. Our system de-
livers an automata-based interpretation of the CCSL lan-
guage formalism and allows extending the language con-
structs with user-specific primitives. Moreover, we have
created an embedded domain-specific language (eDSL) for
CCSL, which, through the use of the Smalltalk’s flexible lan-
guage, provides a simple, readable and extensible concrete-
syntax for logical time specification. Furthermore, we ar-
gue that this eDSL is much closer to the abstract “pseudo-
mathematical” notation presented in the CCSL literature
than the one integrated in the TimeSquare toolkit.

One important goal behind our approach, besides embed-
ding time in a programming language, is to offer the tools for
opening the toolbox and enable to explore new ideas, iden-
tify new problems that could be addressed by such a toolkit,
and provide a way to explore these new (or old for that mat-
ter) usage scenarios. To emphasise the advantages of our ap-
proach, some usage scenarios enabled by CLOCKSystem are
presented. Amongst these, the possibility to exhaustively ex-
plore the state-space of a given specification paves the way
to verification by model-checking [3]. The scope of this ver-
ification can either be the CCSL specification alone or its
composition with the time-constrained-system, which how-
ever has to be expressed in a formal language. A second us-
age scenario, namely Design-Space Exploration, is enabled
by the complementarity between the declarative CCSL for-
malism, enabling the simple encoding of specifications, and
the imperative nature of Smalltalk, which offers the power
of a general-purpose programming language for “scripting”
different analyses phases searching throughout the solution-
space. Testing and Monitoring are other usage scenarios in
which the CLOCKSystem specifications are simply seen as
the compact encoding of a test case which can, also, be de-
ployed in production and which follows the system execu-
tion (through events) constantly checking the coherence be-
tween the specification and the real execution observed.

To better illustrate our approach, throughout this study
we use an example based on a logical clock specification
of a simple Synchronous Data-Flow model of computation,
which is inspired from [18].

The main contributions of this study are:

* The integration of a logical clocks formalism into a
general-purpose object-oriented programming language
like Smalltalk;

* The design of an small and extensible logical time kernel,
which, while based on the CCSL language, extends its
expressiveness though the addition of automata-based
user-defined primitives;

* The creation of a readable and extensible embedded DSL
for the creation of domain-specific parametric libraries
of clock relations. This eDSL uses simple Smalltalk
message-sends for creating a skinnable language on top
of a simple core interchange format;

* The introduction of a several scenarios for which ClockSys-
tem has the potential to facilitate formal methods inte-
gration, and ultimately the creation of better software
applications.

This study is structured as follows. Sec. reviews the main
motivations behind our approach while introducing some of
the related work. The CLOCKSystem eDSL is introduced in
Sec. 3 and it is compared with the abstract CCSL and the
TimeSquare notations. Sec. 4 presents the intuition behind
four different usage scenarios enabled by our approach. Sec.
5 discusses some details of our toolkit, presenting its core
structure, the extension mechanism, an interchange format
and the details of our eDSL concrete-syntax before briefly
introducing the semantics. This study concludes in Sec. 6
overviewing some future research directions.

2. Motivations and Related Work

This sections overview the main motivations and princi-
ples that have driven our approach. First the notion of time
and some of its interpretations are briefly overviewed. Then
the Clock Constraint Specification Language is introduced
along with the TimeSquare toolkit, the de-facto CCSL im-
plementation. Some of the limitations of the current tools
are presented, emphasising the need for an user-friendly
concrete-syntax and a more natural embedding in a general-
purpose programming language. Finally, some technical ad-
vantages emerging from the complementarity between a
declarative language, such as CCSL, and an imperative high-
level language, such as Smalltalk, are presented.

2.1 From Time to Logical Time

To cope with the complexity of the intricate relations be-
tween time and other concepts that they manipulate, differ-
ent disciplines often use particular interpretations of time.
Schreiber addresses some of the fundamental issues of the
notion of time, in the context of computer science and engi-
neering, in [24] .

A very important distinction that govern much of our cur-
rent view of time is the distinction between the quantita-
tive notion of time in physics, sometimes referred as “phys-
ical time” in computer science literature, and other more
abstract models capturing only some characteristics of the
physical time and its influences (ex. relations). For example,
in today’s digital integrated circuits, time is approximated
using the discrete notion of clock. A clock is a particular
type of circuit that oscillates periodically between two dis-
tinct values used to coordinate the operation of digital cir-
cuits. To cope with their complexity, the designers divide
the circuits in different clock-domains each one driven by an



independent clock, hence creating multi-clock systems, of-
ten called polychronous [11]. The communications between
these clock-domains are based either on clock synchronisa-
tion or on handshake protocols. Both these techniques are
equally found in concurrent and distributed systems and pose
unique challenges for reasoning about the system actions. In
these two particular cases, what counts is not so much the
time itself (its physical representation, nor its discrete inter-
pretation with clocks) but the events of interest (sending/re-
ceiving a value, waiting for a partner, etc) and their partial
ordering. To capture these aspects, in his seminal work [14],
L. Lamport introduced the notion of logical clocks which
abstracts away the notion of physical time to a partial order
of events of interests. The connection between these logical
clocks and the causal relations between the corresponding
events identified by R. Schwarz et al. [25] gave rise to a rich
theory enabling to characterise the behavior of distributed
systems. Moreover, since the nature of the events of interests
is not necessarily time related, this theory enables reasoning
about other physical quantities and concepts. A typical ex-
ample is the notion of deadline which can be expressed ei-
ther as the process should stop after 15 sec. or the process
should stop when reaching 80 degrees celsius. In the latter
case, we use a logical clock to follow the evolution of tem-
perature and stop the process when the deadline is met. This
generalisation of logical clocks to other physical or abstract
quantities (modelled as events) is known also as Multiform
Time [21].

Today, highly-complex multi-core computing architec-
tures are ubiquitous. They enable the concurrent and/or par-
allel execution of thousands (if not millions) of software
tasks (be them processes, threads, actors, etc.). In this con-
text, the need for time-driven reasoning permeates more and
more from the hardware and distributed system domains
to mainstream software development. Take for example the
highly complex interactions between the execution threads
of a typical web-browser. In these cases relying on logical
clocks as a model of time has the potential to greatly improve
software quality by enabling formal reasoning and verifica-
tion. However, while all of todays general-purpose program-
ming languages include primitives for concurrency and par-
allelism through different mechanisms, in standard settings,
none of them offers support for time-aware modelling, rea-
soning or verification that proved very useful in the context
of hardware, distributed and realtime system modelling and
implementation. The CLOCKSystem language and toolkit
tries to address this shortcoming by embedding a logical
time formalism, namely CCSL, into the Smalltalk general-
purpose object-oriented language and environment.

2.2 Clock Constraint Specification Language

The notion of Logical time is at the core of synchronous
languages, such as Signal [15] and Lustre [12], and they
are extensively used for the design and implementation of
hardware and embedded real-time systems. However, di-

rectly integrating such approaches into a general-purpose
programming language posses many challenges, mainly due
to the complexity of these languages and the presence of
technical artefacts coming from the embedded domain. The
CCSL language [1], was designed to represent time relations
through the logical time formalism following a high-level
domain-agnostic approach. Hence, it makes an ideal target
for embedding, since it is conceptually simple, and free of
technical-space artefacts.

The core abstraction of CCSL reposes on the notion of
clock, viewed as a strictly ordered sequence of instants
(ticks), and the explicit descriptions of the relations between
the instants of a set of clocks. There are two principal classes
of relations: causal and temporal. The basic causal relation is
the precedence relation (a < b) implying that the instants of
the clock a causes the instants of clock b. The main temporal
relations are the: coincidence (a = b), meaning that both the
instants of a and b occur at the same time or do not occur at
all; strict precedence (a < b), meaning that the instants of
a always occur before the ones of b and never at the same
time; and the exclusion (a # b), stating that the instants of a
are mutually exclusive with the ones of b. Besides these core
relations, CCSL defines a subclocking relation (a c b) used
for specifying that the set of instants of clock a is actually a
subset of the instances of clock b — whenever an instant of a
occurs, an instant of b occurs.

To enable the characterization of complex clock specifi-
cations, the CCSL language introduces a number of clock
expressions that, as opposed to the relations, enable to de-
rive new clocks based on the existing ones. Some of these
expressions are: the intersection (a * b), which creates a
clock having the set of instant equal to the intersection of the
set of instants of the arguments; the union (a + b), which de-
rives a new clock based on the union of the set of instances
of the arguments; the infimum (a A b) and supremum
(a v b) which defines a new clock faster/slower than both ar-
guments (coincident with the fastest/slowest); the waiting
(a $ n), creating a clock that ticks only after n ticks of the
argument clock.

Another interesting, and rather complex expression is the
clock filtering (a wo.(p)*) that creates a new clock coinci-
dent with explicitly selected instants of the argument clock
a. These instants are selected based on a specification en-
coded as a binary word (0.(p)“) composed of two distinct
binary sequences: the of fset (0), seen as a static non re-
curring sequence, and the period (p) a infinitely repetitive
binary word. The instants of this clock follows closely the
structure of these two binary words. For each instant of the
argument clock a we move to the right in the sequence, if the
bit is set to 1 the resulting clock should tick if not it should
not. Once at the end of the periodic sequence we restart from
the beginning of this sequence.

The TimeSquare toolkit [7] is the de facto standard toolkit
for the specification and the analysis of CCSL logical time



specifications. It is implemented as a model-based envi-
ronment integrated into the Eclipse platform, and benefits
from a number of model-driven technologies. TimeSquare
proposes a concrete, textual syntax for the CCSL language
based on XText DSL framework [9]. Besides, TimeSquare
implements a CCSL constraint resolution engine for simu-
lating the specifications, integrates model-animation facili-
ties and offers the possibility to execute arbitrary Java code
symbolically associated to clocks from the specification.

The CCSL language provides a very expressive formal-
ism for reasoning about logical time and the intricate rela-
tions between events in real systems. Moreover, TimeSquare
enables the definitions of domain-specific libraries build
from the primitive operators. However, in some cases, the
declarative and sometimes complex nature of the CCSL
primitive operators renders the creation of these libraries
difficult, and even inefficient with respect to the complex
constraint resolution policy needed for implementing its se-
mantics. To address these issues, in CLOCKSystem we in-
troduce the possibility to extend this core language, through
domain-specific user-defined automata. A side-effect of this
capability is the possibility to explicitly meta-describe all
CCSL primitive operators and include them simply as a stan-
dard library, instead of hard-coding their exact semantics in
the execution engine.

Furthermore, the XText-based concrete-syntax integrated
in the TimeSquare toolkit, while having its advantages, ren-
ders the task of library specification difficult due mainly to
an important syntactic overhead compared to the abstract no-
tation presented in the literature. CLOCKSystem addresses
this issue by providing an extensible, simple eDSL imple-
mented through Smalltalk messages which through the use
of syntactic synonyms can be adapted to domain-specific vo-
cabularies or even user preferences. Moreover, it proposes a
simple interchange format as a common basis for bridging
the gap between possible vocabulary differences and for in-
teroperability with external environments.

2.3 Opening the toolbox

To achieve our goal of integrating logical time in a general-
purpose programming language, we need to open the tool-
box and expose the core of the formalism along with the as-
sociate tooling to the host environment. Through the eDSL
proposed by ClockSystem, which uses syntactically correct
Smalltalk code for CCSL specifications, we move one step
closer towards this goal. However, the real gain comes from
the new usage scenarios that emerge due to the possibility
to run arbitrary pre-preprocessing and post-processing steps
on any given specification, to link logical time-models with
a dynamic environments such as Smalltalk and to provide
the application developers with tools for reasoning about in-
tricate concurrency problems. We believe, that an approach
such as CLOCKSystem can serve as a basis for studying and
understanding better the relations between our programming
environments and the highly complex systems on which they

run on. At the same time, CLOCKSystem is an experimen-
tal platform for improving the quality of current models of
time which have a number of shortcomings, such as: a) poor
scalability for large models; b) poor support for dynamic
systems.

3. CrockSystem for CCSL Users

An important requirement for implementing a modelling
language as an embedded DSL (eDSL) in a general-purpose
programming language is that the embedding should reduce
the syntactic overhead to a minimum. Hence, providing a
comfortable and familiar environment for the DSL users,
while at the same time enabling the eDSL designers to focus
more on the language features than on the grammar develop-
ment and parsing. An embedding is not always perfect, and
often some amount of syntactic overhead is inherent. To em-
phasise our results we compare our syntactic encoding of the
CCSL model with the abstract notation, introduced in differ-
ent papers, and the TimeSquare language. Towards the end
of this section, we show that in the cases where our encod-
ing fails to match the abstract-notation it reuses the textual
encoding of TimeSquare. Moreover, our lightweight syntax,
based on message sends, enables the user to easily define
keyword synonyms that can help to close the gap between
a given domain-specific vocabulary and our formalism. We
illustrate the results of our embedding of CCSL in Smalltalk
(Pharo dialect) through a simple example inspired from [18].
This example is focused on the modeling the control aspects
of Synchronous Data-Flow (SDF) applications with CCSL.

3.1 Case Study: Synchronous Data-Flow

SDF graphs are an abstraction for modeling data-flow com-
putations that enables static task scheduling. This model en-
codes data-flow computation as a graph where nodes repre-
sent the computations (actors) and the edges represent the
data dependencies. The designer associates to each compu-
tation block the static rates of input consumption and out-
put production for each input/output dependencies. A sim-
ple SDF model can thus be represented with a graph with
the edges labelled with 3-tuple (outputRate, initialTokens,
inputRate). Note that here the storage capacity of each edge
is infinite, as in the case of Kahn networks [13].

The execution of a SDF application is governed by the
following rules:

* An actor can execute (is enabled) only when all its re-
quired inputs are available. An input is available when
the number of tokens (data samples) in the incoming edge
is larger or at least equal to the predefined inputRate;

* The execution of an actor results in the consumption
of inputRate tokens from all incoming edges and the
production of exactly the output Rate tokens on each of
its output edges. The tokens produced by one execution
are buffered on the outgoing arcs in a First-In First-Out
(FIFO) manner;



* initialTokens is a statically defined property of edges
defining the number of tokens available at the beginning
of the execution;

* The execution of any actor is not dependent on the token
values, meaning that the control is data-independent.

In [18] the authors describe one possible CCSL encod-
ing of these execution rules using three clock constraints
describing the allowed actor firings. This encoding asso-
ciates to each actor a CCSL clock representing the execu-
tion of the actor. The FIFO channel (edge) between two ac-
tors are managed with another two clocks: read and write.
The read/write clock ticks whenever one input/output is
added/removed to the FIFO. Then for each channel three
constraints on these clocks are added: /) input constraint,
governing the relation between the actor execution and the
input Rate tokens available at the input; 2) output con-
straint, governing the relation between the actor execution
and the output Rate tokens produced; 3) token constraint,
encoding the number of available tokens in an arc as the dif-
ference between the number of read and write operations.

3.2 Constraint Definition Syntax: Comparative Study

The CCSL encoding of the input constraint is specified in
[18] as a precedence relation using one precedence relation
and one filtered By expression. Listing 1 shows the encod-
ing of this constraint using the abstract notation. The intu-
ition behind this constraint is that the actor execution should
be preceded by the addition of at least input Rate tokens in
the channel.

Listing 1: CCSL specification for the SDF input constraint

def input(clock actor, clock read, int inputRate)=

(read w.(0PutRate=l 1)WYy . getor

In CLOCKSystem the input constraint (from Listing 1) is
expressed by defining a message input:read:inputRate:
implemented like in Listing 2, where actor and read are
clocks and inputRate is a number. The message period:
can be seen as syntactic sugar defined to create a filter By
expression without an of fset. The binary word required by
the expression is created by using classical Smalltalk Array
concatenation (the for: message send to a number X cre-
ates an array with n identical elements equal to X). The <
message represents exactly the precedence relation as the <
abstract notation.

Listing 2: CLOCKSystem specification of the SDF input
constraint

actor read: read
(0 for:

inputRate: inputRate
(inputRate-1)),{1}) < actor

input:
(read period:

The reader should notice that the principal reason for
the syntactic overhead in Listing 2 comes from the repre-
sentation of special characters and notations, such as w,
and power notation zY as ASCII encoded message sends

(period:, for: ). Besides that, there are two Smalltalk-
specific artefacts, namely the colon separating parts of the
message symbol, and the comma that replaces the dot char-
acter in the abstract notation. These represent a small syn-
tactic overhead that will probably not be present in a CCSL-
specific keyword-based language grammar. Notice also that
the O for: (inputRate-1) does not use the common *
symbol used for power notation in some general purpose
programming languages since it is a Smalltalk reserved char-
acter. Nevertheless, we consider that in this case our notation
follows rather closely the abstract one, especially when com-
pared to the rather verbose language used in TimeSquare for
the same purposes, see Listing 3. We will leave to the reader
the exercise of understanding the meaning of that Listing.

Listing 3: TimeSquare specification of the SDF input con-
straint

RelationDeclaration Input(
actor :clock ,
read:clock ,
inputRate :int)
RelationDefinition InputDef[Input]{
Sequence BylnputRate=
(IntegerVariableRef[inputRate])
Expression readByInputRate=FilterBy (
FilterByClock —>read ,
FilterBySeq—>BylnputRate)
Relation inputRateTokenExec[Causes ](
LeftClock—>readBylInputRate ,
RightClock—>actor)

Listing 4 shows the composition of the CCSL relations
needed for representing the SDF semantics. We will not
describe the meaning of this listing since it is very well
explained in [18]. However, for comparison we show the
CLOCKSystem equivalent in Listing 5, and note the small
syntactic overhead, again compared to the TimeSquare spec-
ification which amounts for almost 100 lines of code and was
not included for obvious reasons.

Listing 4: CCSL specification of the SDF semantics

def edge(clock source, clock target,
int out, int initialTokens , int in) =
clock read

clock write

source = (write v.(1.0°%t1)«)
A write < read $ initial Tokens

A (read w.(0""1.1)) < target

Listing 5: CLOCKSystem specification of the SDF semantics

edgeFrom: source to: target
outRate: out initial: initialTokens inRate: in
|t wl

self localClock: #read.
self localClock: #write.

I
w

source===(w period: ({1}, (0 for: (out-1)))).
w < (r waitFor: initialTokens).

(r period: (0 for: (in-1)), {1}) < target
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Figure 1: An example of an SDF graph

3.3 Constraint Instantiation

In the last section we have presented the creation of a li-
brary operator for encoding SDF execution as CCSL clock
and clock constraints. In this section, we illustrate the usage
such an operator in the case of the simple SDF application in
Fig. 1. This example consists of three actors A, B, and C con-
nected with three edges labelled as follows: E45(1,0,2),
Epc(2,0,1), Ecp(1,2,2).

Using the CCSL abstract notation it suffices to instan-
tiate the edge constraint as follows: edge(a,b,1,0,2) A
edge(b,c,2,0,1) A edge(c,b,1,2,2). In CLOCKSystem,
the same effect can be achieved through a script like the
one in Listing 6. For brevity, we omit the clock definitions
in the CCSL case (one for each SDF actor: a, b, ¢). The
CLOCKSystem notation is more verbose compared to the
abstract one, which is due to the use of multi-arguments
message sends. In our case, this overhead is not strictly nec-
essary, and can be seen as a personal choice, but we believe
that it improves the readability of our specifications. The al-
ternative would be to use an array encoding of the arguments
(such as edge: {a.b.1.0.2}) which would be much closer to
the CCSL notation.

Listing 6: CLOCKSystem instantiation of the SDF con-
straints for the example in Fig. 1

sys := ClockSystem named: ’sdf’.

a := sys clock: #A.

b sys clock: #B.
© sys clock: #C.

Sys
edgeFrom: a to: b outRate:1 initial:0 inRate:2;
edgeFrom: b to: c outRate:2 initial:0 inRate:1;
edgeFrom: ¢ to: b outRate:1 initial:2 inRate:2.

In TimeSquare, the instantiation is done in a similar way,
however with some complications brought by the integration
with the UML Marte profile (ex. the clocks have references
to the model elements). In [6] the authors presents an exten-
sion of the OCL language, named ECL, enabling the creation
of CCSL instantiation scripts that would then be executed
on particular model instances. For this aspect the similar-
ity between OCL constructs with the traditional Smalltalk
API (especially the Collection API) makes us conclude that
the user of CLOCKSystem has at his disposal a much richer
“scripting” language which can be used for the same pur-
poses as ECL.

Table 1: Syntactic differences between CCSL notation,
CLOCKSystem and TimeSquare.

Name Notation CLOCKSystem TimeSquare
Subclocking ach a subClock: b SubClock(a, b)
Coincidence a=b a=== Coincides(a, b)
Precedence a<b a<=b NonStrictPrecedes(a, b)

Strict Precedence a<b a<b Precedes(a, b)
Exclusion a#b a<>b Exclusion(a, b)
Expressions
Inf anb ainf: b Inf(a, b)
Sup avb asup:b Sub(a, b)
Defer a(ns) ~b a defer: b for: ns Defer(a, b, ns)
Sampling a~b anonStrictSample: b | NonStrictSample(a, b)
Strict Sampling a—b asample: b Sample(a, b)
Intersection ax*b ax*b Intersection(a, b)
Union a+b a+b Union(a, b)
Waiting a$n a waitFor: n WaitFor(a, n)
Preemption atb aupTo: b UpTo(a, b)
Filtering a vo.(p)* a filterBy: {o0.p} FilterBy(a, b)

3.4 Syntactic Differences and Synonyms

To complete our comparison, Table 1 shows some of the
most important operators of the CCSL language using
the abstract, CLOCKSystem and TimeSquare notations. In
CLOCKSystem, the strict precedence, intersection and union
relation use the same notation as the CCSL description.
The precedence uses the widely accepted ASCII encoding
for <. For the coincidence and the exclusion relations dif-
ferent notations were used due to the use of = for equal-
ity checks in Smalltalk language, and the reserved use
of the # character. In these cases we also defined syn-
onym messages that reproduce the TimeSquare naming. All
other CCSL operators are encoded using a camel-case ver-
sion of the TimeSquare keywords. A particular case is the
defer:for: message, which uses a multi-argument mes-
sage for the same readability reasons we explained in the
case of edgeFrom:to:outRate:initial:inRate: (List-
ing 6).

The CLOCKSystem encoding of all CCSL operators as
message-sends enables the user to easily define keyword
synonyms by simply defining a new message that redirects
its arguments as needed to the provided primitives, see for
example Listing 7 showing 4 equivalent ways of creating a
strict precedence relation between two clocks a and b. This
feature is clearly a by-product of our embedding, however
it is very important for a modeling language as generic as
CCSL since it enables the users to adapt the specification
language to match the vocabulary of their domains of interest
or their personal choices.

Listing 7: Syntactic synonyms for a < b relation

a <b.

b > a.

a precedes: b.

system relation: #strictPrecedence clocks: {a. b}
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Figure 2: Cyclic simulation trace and different visualisations
with CLOCKSystem for the SDF example in Fig 1

4. Beyond Standard Simulation

While different use-cases for CCSL were proposed in the
literature [17, 26], currently the main functionality imple-
mented in TimeSquare is the simulation of specifications,
with the possibility to animate different model elements by
associating clock ticks with the execution of particular func-
tions. In this section, we overview some extensions and new
usages that are enabled by our embedding in the Smalltalk
environment.

Cyclic Trace Interpretation. The CLOCKSystem simula-
tor implements a trace-based simulator. While executing a
given specification, it constantly verifies the existence of
loops back to an already seen system state, in which case it
can either stop the simulation reporting an infinite trace (in-
finite due to the possibility to loop-back an arbitrary number
of times) or it can continue, maybe choosing a different path.
Fig 2 presents the results obtained for the SDF example, in-
troduced in Fig. 1. The first visual representation of the ex-
ecutions trace, in Fig. 2a, offers an automaton view of the
simulation trace, while the second one in Fig. 2b) shows a
different waveform-like visualisation which uses the square
brackets to represent the unbounded repetition of the last 3
steps. Traditionally, the TimeSquare simulator is producing
a waveform trace similar to the one we present in Fig. 2c.
However, in our case this finite simulation trace was ob-
tained by the interpretation of the automaton presented in
Fig. 2a for exactly 21 steps, and not directly from the CCSL
specification.

Exhaustive Reachability Analysis and Model-Checking.
Besides the simulator, the CLOCKSystem toolkit provides
the possibility to perform exhaustive reachability analysis of
the CCSL specifications thus paving the way towards formal
verification of properties agains these specifications.

To better understand the importance of providing such fa-
cilities, consider for example the approaches taken in [26]
and [19] for model-checking UML Marte application re-
stricted by CCSL constraints. In these two cases, the au-
thors invested a lot of effort to encode (more or less man-
ually) the correct semantics of each CCSL operator in a for-
mal language, such as Fiacre [10], moreover the complex
constraint composition mechanism had to be implemented
in those languages. We believe that this process is cumber-
some, and prone to errors especially since these two formal-
ism are more adapted for asynchronous system modeling
and verification. As such, another degree of difficulty was
added by the interpretation of the coincident clock firings as
the interleaving of all events. Moreover the property specifi-
cation, and the result interpretation in these cases is difficult
since the resulting semantic encoding was polluted by the
semantics of the constraints and constraint composition en-
coding.

Relying on the exhaustive reachability results, we have
developed an interface with the OBP model-checking toolkit
[8] that enables the verification of UML models. To achieve
this, an UML model is transformed to a formal language (as
in the previous cases) and the resulting program is com-
posed with the reachability analysis results produced by
CLocCKSystem. To ensure the correct semantics for the com-
position, the results obtained with CLOCKSystem were post-
processed only for expanding the coincident relations (by
generating the correct interleaving)'. This approach enables
the verification of safety and bounded liveness property on
a subset of UML Marte constrained using CLOCKSystem
specifications.

Design-space Exploration. An important aspect during
system design is creating a feedback-loop between a given
system model and the analysis results. Conceptually sim-
ple, this process, known also as design-space exploration,
states that the analysis results should be taken into account
to improve the model. The automation of this process is hin-
dered, in the case of declarative languages, by the lack of an
adapted programming layer around the modeling language
and associated tools (solvers, simulators, etc.), which drives
the designers towards the use of complex and low-level
script-based solutions, which are hard to create and main-
tain. Embedded DSLs rely on host-language facilities for the
automation of such task, and, in the case of CLOCKSystem ,
the full power of the Smalltalk language and environment is
at user disposal.

Testing and Monitoring. In a concurrent software context,
the clocks could be seen as types of events which are pro-
duced during execution, then a CLOCKSystem specification
describes the set of valid relations between these events. In

!'We call coincident firings (relations) all cases where two clocks tick at the
same time. Visually these cases are represented by tuples like {A. C} in
Fig. 2a



this case, a program can be viewed as a high-level test spec-
ification, which encodes not only one valid execution path
but a set of paths. Integrating such approach into unit test-
ing frameworks such as SUnit does not pose any challenges,
however it can help detect subtle concurrency bugs in con-
current Smalltalk applications. In production, these specifi-
cations could be embedded into the deployed images to help
monitoring the application. Moreover, a counterexample, re-
sembling the traces in Fig. 2, can be generated to help un-
derstanding the cause of the malfunction.

5. The CLoCKSystem Toolkit

The CLOCKSystem language is an extension of the CCSL
domain-specific language (DSL). The implementation is
deeply embedded in Pharo Smalltalk environment. As an
embedded DSL, CLOCKSystem programs are encoded as
syntactically correct Smalltalk code, moreover its abstract-
syntax tree (AST) is exposed as plain smalltalk objects.
While benefiting from the CCSL simple but powerful ap-
proach for time reasoning, CLOCKSystem exploits the flexi-
bility of the Smalltalk language to provide a readable syntax
for the CCSL language, that can replace the current library
specification language integrated in TimeSquare.

The key ideas behind our approach are: a) provide a
minimal kernel for experimenting with logical time for-
malisms in Smalltalk; b) offer a flexible and simple lan-
guage for extending the kernel with user-defined event re-
lations; c¢) enable the development of new analysis tools
for CLOCKSystem specification, like exhaustive reachabil-
ity analysis.

This section starts by describing the kernel of our envi-
ronment, emphasising the possibility to extend the language
primitives introduced by CCSL with user-defined clock-
relations. Then a minimal core-syntax in presented, which
can be used interchange format between different environ-
ments, before briefly discussing the execution semantics and
some of the existing analysis tools.

5.1 Meta-described Clock Constraints

The CCSL language, was designed to represent time rela-
tions through the logical time formalism following a high-
level domain-agnostic approach. Hence, since it is concep-
tually simple, and free of technical-space artefacts, it is
an ideal candidate for introducing notions of time into a
general-purpose programming language.

The Need For New Primitives. Nevertheless, we have
found that relying only on the primitive operators provided
by CCSL was sometimes inefficient, cumbersome and ren-
dered the expression of state-based relations difficult.

To illustrate these difficulties, consider the SDF example
introduced in the Sec. 3.1. In this case, an equally valid SDF
execution semantics (as in Listing 4) can also be encoded us-
ing an automaton like the one presented in Fig. 3, in which
case the output, token, and input constraints (used in List-
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Figure 3: Automaton encoding the SDF execution policy
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ing 4) are encoded in a simple controller automaton govern-
ing the access to the FIFO channels connecting the actors.
The intuition behind this automaton is as follows: a) read-
ing and writing to the channel are exclusive — no reading
and writing at the same time; b) the process writing data
(represented by the w clock) simply writes out Rate tokens
to the channel; ¢) the process reading data (represented by
the r clock) is enabled only if there are enough tokens in the
channel size >= tn Rate, otherwise it is blocked. In this case
a specification for the SDF application in Fig. 1 only needs
to create only 3 clocks and to instantiate 3 relations, one for
each edge in the SDF application, instead of 18 clocks and
18 relations needed in the case of the specification presented
in Listing 6. This renders the specification easier to under-
stand, and speeds up the model simulation and analysis since
it does not introduce intermediate clocks nor relations.

To address this expressivity problem, in CLOCKSystem
we have decided to implement the CCSL operational seman-
tics by specifying its mapping to a state-machine based en-
coding, such the one presented in [23], rather than directly
implementing it in a traditional interpreter (as is the case in
TimeSquare). This approach proved very useful since it en-
abled from the beginning the possibility of using automata-
theoretic analysis techniques, such as reachability analysis
and model-checking, directly on our model without recur-
ring to complex model-transformation approaches (such the
ones presented in [26]). Moreover, it helped reducing the
number of language concepts to a minimum (all primitives
operators are meta-described by automata), and opened the
conceptual framework for seamlessly integrating state-based
relations into the CLOCKSystem language.



{a b}
{a} fab o >
—) —)
0 {b} 1 (b} 2 (XX
<« «——— €=

Figure 5: The infinite automaton of the a < b relation

ClockSystem Metamodel. At its core, the CLOCKSystem
toolkit relies on the Smalltalk implementation of the meta-
model presented in Fig. 4. In this meta-model, the two cen-
tral concepts are the C'locks and the Clock Relations. The
Clocks are instantiated and linked to problem-space ob-
jects representing the different events of interests. Each
ClockRelations contains an automaton specification en-
coding its operational semantics. Conceptually, this automa-
ton is just a set of transitions between discrete states. Each
transition is just an association, between one source state
and one target state, labelled by a vector of Clocks that tick
when the transition is executed and an actionBlock that is
executed when the transition is fired. The purpose of this
action block is to update either the state-variables of the
automaton or the global variables in the system. Semanti-
cally, the execution of each transition is considered atomic.
Note that, in our setting, the CCSL expressions are nothing
more than simple Clock Relation instances with an “inter-
nal clock” representing the clock produced by the expres-
sion. The ClockSystem class, in Fig. 4 simply composes
the set of Cllocks and ClockRelations defined in a given
model.

A DSL for Primitive Relations. Traditionally, in automata-
based approaches for ensuring theoretical properties (such
as decidability, termination, etc.) the state-machine are con-
strained to be finite. However, this is not the case in CCSL,
which has some infinite clock relations, such as the prece-
dence. To cope with this difficulty, in CLOCKSystem, infi-
nite automata are encoded symbolically through a relation-
definition DSL (relDSL) using Smalltalk blocks?. In this
case, the Automaton of given relation does not explicitly
contain a set of transitions but a block that returning the out-
going transitions from a given state.

To better illustrate this aspect consider, for example, the
infinite automaton for the strict-precedence relation shown
in Fig. 5°. In CLOCKSystem this relation is defined by the
Smalltalk block presented in Listing 8. The infinite num-
ber of states in the automaton is encoded through the state-

2Note that reIDSL can be seen as a meta-level DSL for specifying
ClockSystem primitive relations and should not be confused with the
ClockSystem DSL which only instantiate these relations

3 All CLOCKSystem automatons are synchronous, and complete in terms of
the clock vocabulary. To simplify the presentation we do not include in Fig.
5 the transitions that loop in a state while not enabling any clock nor the
negation of all clocks not enabled by the transition

variable s which is a Smalltalk integer. Once this encoding
is in place, the block responsibility is to return the possible
transitions from a given state. For example, if the state vari-
able is 0, executing the block such as strictPrecedence
value: O value: clockl value: clock2 will return
a set with only one transition, namely {s->(s+1) when:
{a}} saying that the automaton can go to the state s+1 (0+1
in this case) and if it does the clock1 should tick and clock2
should not. Note that in this case another transition is pos-
sible, namely s->s when: {-clockl.-clock2} stating that
the system can stay in the same state s for an indefinite
period of time. However, if it does so, neither clockl nor
clock2 can tick. The CLOCKSystem execution engine au-
tomatically adds the negation off all clocks not present in
a transition vector, and the transitions that block all clocks
while staying in the same state of the system to ensure the
correct semantics.

Note that, due to the unbounded representation of integers
in Smalltalk, (through Smalllnteger, Biglnteger instances)
limited only by the amount of available memory, we did not
need to use a symbolic integer encoding, which might be
more adapted in certain situation.

A side-product of this simple block-based representa-
tion is support for manipulating variables in the automa-
tons that comes at no cost. The variables are nothing more
than state-variables (such as s). Instead of interpreting them
as the source/target of transitions they are used for build-
ing predicates to guard the transitions, and are updated in
the action Blocks using plain Smalltalk code. Constants are
also supported in the same manner. For constants, to ensure
that they are not updated in the action-blocks they are simply
not passed as arguments when these blocks are evaluated.
They can, however, be used in a read-only manner since
they will be free variables in the action block and capture
their value from the enclosing scope, the automaton block —
where they are block arguments which are not assignable in
Smalltalk.

Listing 8: The CLOCKSystem definition of the infinite a < b
relation

KernelLibrary >>#strictPrecedence
" [ :s :a :b |
“unbounded strict precedence”
s =0
ifTrue: [ {
s => (s + 1) when: {a} } ]
ifFalse: [ {
s => s when: {a. b}.
s => (s + 1) when: {a}.
s => (s - 1) when: {b} } 1 1]

A Primitive for SDF. To illustrate the generality of our ap-
proach, consider once more the SDF example introduced
in Sec. 3.1 and the possible automata-based relation spec-
ification introduced in Fig. 3. To encode this relation in
CLOCKSystem, firstly we add a block argument s repre-
senting the mapping of the discrete automaton states to in-
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tegers. Then, the variables manipulated by the automaton
are identified and added as arguments — size in our case,
followed by the constants used in the predicates — in Rate,
out Rate and capacity (when the capacity > 0 we consider
the the FIFO channel is bounded and can contain maximum
capacity token, obviously for a valid model the capacity >
outRate). Lastly, we add the clocks that are constrained
by the automaton — r and w in our case. Once the argu-
ments of the block identified, the transitions are encoded
in the block, see Listing 9 for this example. First of all,
there is a slight difference from Fig. 3, introduced by adding
the notion of channel capacity. The clock w and the as-
sociated transition is enabled only in the case where either
the capacity < 0 — the channel is unbounded — or, if it is
bounded, there is enough place in the FIFO to store out Rate
tokens (capacity — size >= outRate). Note also the pres-
ence of the actionBlocks used to update the variable size.
As stated before, these blocks are executed when the cor-
responding transition is fired with the state-variables as ar-
guments (in this case for example, the actionBlock is exe-
cuted through as message send like actionBlock value:
currentState value: currentSize, where s and size
are the values of the state variables at a given point during
execution).

Listing 9: User declared relation for a SDF channel

SDF >> #channel
“[:s :size :inRate
| transitions |
transitions := OrderedCollection new.
size >= inRate ifTrue: [
transitions add: (
0->0 when: { r } do:

:outRate :capacity :w :r |

[:conf | |sz]
sz := conf at: 2. //size var
conf at: 2 put: (sz - inRate)
D1
(capacity <= 0 or:
[capacity - size >= outRate]) ifTrue: [

transitions add: (
(0->0) when: { w } do:

[:conf | |sz]
sz := conf at: 2. //size var
conf at: 2 put: (sz + outRate)
D 1.
transitions asArray ]

All Relations are Not Created Equal. Using this encoding
scheme we have been able to model all CCSL operators,
except the concatenation operator. In automata-theoretic
approaches the CCSL concatenation relation is known as
the sequential composition of state-machines. Hence, even
though in CCSL it is presented on equal terms with respect
to the other clock relations, it is really a meta-operator that
enables to link several clock relations in a sequential man-
ner. In CLOCKSystemthe CCSL concatenation can be im-
plemented by the explicit identification and annotation of
the final states of the several finite relations. Then the con-
catenation relation instance is responsible only for passing

the control from these final states to the initial state of the
following automaton.

Some Practical Limitations. Though simple, and power-
ful, this technique has the disadvantage of rendering the
state-machines opaque, making it difficult to statically rea-
son about the primitive relations in CLOCKSystem. For ex-
ample, it is hard extract the set of transitions of a given finite
automaton. In the case of TimeSquare, and traditional CCSL
this is not an issue due to the fix number of primitive rela-
tions, which can be hard-coded in an analysis engine. How-
ever, in our case such “hard-coding” is not possible due to
the possibility to add new user-defined primitives — defined
through our relDSL — like the SDF primitive in Listing 9. To
address this issue, in the future, we plan to use this encoding
only for the infinite automata (that motivated it) and provide
a simpler more explicit specification language for the finite
ones to facilitate their statical analysis.

The principal advantage of our automata representation is
that it offers a simple extension mechanism for adding prim-
itive relations. In practice this can be very important for effi-
ciency reasons and can ease the specification of some com-
plex interactions. Besides, some engineers are more familiar
to automaton-based specifications (which are more opera-
tional) than to their declarative counter-parts.

5.2 Concrete Syntax and Interchange Format

One of the core motivations behind CLOCKSystem is to pro-
vide an easy to use, read, and understand syntax for spec-
ifying executable time specification inspired by the CCSL
logical clock formalism. Hence, it is important to clarify its
syntax, and provide a standard mean for model interchange
between different environments supporting this formalism
(currently CLOCKSystem and TimeSquare). In this section,
we first introduce a simple generic syntax for expression
CLOCKSystem programs, that also serves as a basis for in-
teroperability. Then we show how using standard Smalltalk
messages we can define different problem-domain specific
syntactic synonyms that, as we have seen in Sec. 3, renders
the CLOCKSystem specifications very short and readable.

Listing 10: Core CLOCKSystem syntax in BNF.

system ::= systemDecl

clockDecl+

relOrExpDecl+

yourself
systemDecl ::= 7 (”

"ClockSystem” “named:” systemName 7)”
clockDecl ::= (oneClock | manyClocks) ”;”
oneClock ::=

("clock:” | "internalClock:”) clockName
manyClocks ::=

("clocks:” | “internalClocks:”) clockList
yourself ::= “yourself” ”.”
relOrExpDecl ::= "library:” libraryName

("relation:” | “expression:”) operatorName

”clocks:” clockList

[”constants:” constantList]

[”variables:” varList] 7;”



clockList ::= "#(” clockName+ ”)”
constantList ::= 7#(” value+ )7
varList ::= "#(” value+ ”)”

xName ::=
value ::=

"#” character+ // Smalltalk symbol
Object // any Smalltalk object

Listing 10 show the BNF specification of the concrete
syntax used in CLOCKSystem for the instantiation of the
Clocks and ClockRelations introduced in the last sec-
tion. The principal characteristic of this syntax is that it
is used indiscriminately to instantiate standard CCSL re-
lations (defined in a Kernel library) or to instantiate the
user-specific extensions. All these specifications starts by
creating a ClockSystem object sending the #named: mes-
sage to the ClockSystem class with a String or Symbol as
argument, then this object acts as a builder for instantiat-
ing Clock objects and ClockRelation objects. The build-
ing of the specification relies on Smalltalk message cas-
cading operator ’;”. The clocks are instantiated either one
by one, or in batch by sending the #clock: or #clocks:
message to the builder (the internalClock(s): mes-
sages are used for creating intermediate clocks needed
by the CCSL expressions). Once the clock declared, the
#library:relation:clocks:constants:variables:

or#library:expression:clocks:constants:variables:

message is used to instantiate a relation (expression) defined
in a given library. To simplify the specification for relation-
s/expressions, that do not need constants and/or variables,
for both these messages we define variants rendering the
specification of the constant and/or variable lists optional.

In Listing 11 we show the specification of the example
introduced in Fig. 1 using this syntax. While still quite read-
able, this syntax obfuscates somehow the model by: a) en-
coding the clocks, constants and variables as lists; b) inlin-
ing all constants and variables needed; ¢) making mandatory
the specification of the library and relation clauses.

Listing 11: Example of the core syntax encoding the SDF
example in Fig. 1 using the relation in Fig. 9

(ClockSystem named: #SDF_exl)
clocks: #(A B C);
library: #SDF relation:

clocks: #(A B)
constants: #(2 1 -1)
variables: #(0);
library: #SDf relation:
clocks: #(B C)
constants: #(1 2 -1)
variables: #(0);
library: #SDF relation:
clocks: #(C B)
constants: #(2 1 -1)
variables: #(2);

#channel

#channel

#channel

Keyword Synonyms. The syntax defined in Listing 10 is
simple and generic, however it fails to deliver a short and
readable syntax for CLOCKSystem specifications, see List-
ing 11, nevertheless it is the basis used in our system. To

achieve the results presented in Sec. 3 we rely on the defini-
tion of ”synonym” messages for instantiating the relations or
expressions needed. Listing 12 shows the definition of 4 such
synonyms for the strict precedence relation. The first one
uses the keyword notation used by TimeSquare, the second
one uses the standard abstract notation <, while the third in-
novates by defining the inverse of the < relation (its antonym
actually), which can also be interpreted as clock a follows
the clock b, which corresponds to our forth synonym mes-
sage.

Listing 12: Declaring syntactic synonyms for a < b relation

Clock>>#precedes: anotherClock
self system
relation: #strictPrecedence
clocks: { self. anotherClock }

Clock >>#< anotherClock
self precedes: anotherClock
Clock >>#> anotherClock
anotherClock precedes: self
Clock >>#follows: anotherClock
self > anotherClock

With these mechanisms in place we consider that the em-
bedding has rather succeeded. However, one detail has been
overlooked. When offering the support for user-defined syn-
tax one risk is that instead of facilitating communication,
the use of syntactic synonyms can hinder it. For example,
imagine a specification written with the keywords in an-
other language (it can be pretty difficult to understand). To
solve this problem, one solution would be to de-sugar the
CLOCKSystem specifications to a standard format, for ex-
ample the language used by TimeSquare. However, in the
case of user-defined primitive” relations this approach fails.
Nevertheless, in CLOCKSystem we do de-sugar the specifi-
cations to the rather verbose but generic language presented
in Listing 10. In the future, we consider building an ontology
of synonyms representing the relations between the mes-
sage symbols and the CLOCKSystem concepts represented
by them, and then de-sugar any specification to a user de-
fined unambiguous set of concepts from this ontology, de-
faulting to the “’core” syntax only for the missing names.

5.3 Execution Semantics and Verification

The execution of logical time specifications, such as ClockSys-
tem, produces series of event occurrences (ticks, instants)
that satisfy the constraints imposed by the specified clock
relations. These series of events can be seen as a partial or-
der of firings of the clocks involved in the specification. The
ticks can be interpreted as the logical activation of some
behavior, eg. a processor cycle, activating the computation
of the next instruction, or the occurrence of a particular
message-send. Thereof, the notion of time captured is de-
coupled from the physical time and represents essentially
notions of coincidence (an event arrives at the same time as
another one) and precedence (an event occurs before another
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Figure 6: All possible behaviors of a specification with 3
independent clocks

one) which correspond to the logical view of time introduced
by L. Lamport in [14].

Clock Behavior. A single non-constrained clock can be
seen as a cyclic infinite behavior that either ticks or does
not tick at any given execution step, in other words the clock
is free to tick at will. If now we consider the behavior of two
or more unrelated clocks together, the expected behavior is
that each clock can decide to tick or not to tick on its own
(non-deterministically) at any execution step, hence creat-
ing an execution sequence containing three possible instant
configurations: /) only one clock ticks alone; 2) all clocks
tick at the same time, in which case we say that their ticks
coincide; 3) some clocks tick together while others don’t.
The set of possible behaviors for a system with 3 indepen-
dent clocks is presented in Fig. 6 as a a Labelled Transition
System (LTS), where the labels are synchronisation vectors,
as introduced in [2], representing coincident instants of the
3 clocks. This LTS represents all possible execution steps
involving the simultaneous tickings of 1, 2, and 3 clocks.
Note that this figure is also a complete automaton for which
we have represented only the steps with clocks ticking, and
that there are implicit transitions that do imply that no clock
ticks.

The Impact of Constraints. Adding constraints to such a
system reduces the number of possible behaviors to the ones
globally allowed by the synchronous parallel composition
of the clock behaviors with the constraint behaviors. Fig. 7
shows the emerging behavior of a previously considered 3
clock system, where two clocks are constrained to alternate,
and we can see that, for example, the three clocks are not
allowed to tick at the same time anymore (the transition
labelled {b. c. a} in Fig. 6 is not present in Fig. 7).

It is interesting to see that, even though the last two
illustrations represent the set of emergent behaviors of a
CLOoCKSystem specification, graphically they are similar
with the primitive constraint automata, shown in Fig. 3 and
Fig. 5. This similarity is not incidental, and emerges natu-
rally from the formalism used to represent the CLOCKSystem
relations. Mainly, the overall composition of the individ-
ual constraints produces an automaton that it is itself a
CLOCKSystem constraint. Thus, it can be seen as a com-
plex primitive relation, which can be instantiated as such.

{C}$ {c.a}
,: {b.c}
{b} {c}

{a} 4_—|

Figure 7: All possible behaviors of a specification with 3
clocks (a, b, ¢) where the ticks of a alternate with the ones of
b.

Arnold-Nivat Processes and Verification. The formalism
used by CLOCKSystem, introduced and formally defined in
[2], and known in the literature as the Arnold-Nivat pro-
cesses, explicitly expresses the interactions between pro-
cesses (eg. synchronisation) through a high-level abstrac-
tion mechanism, named synchronisation vectors. This mech-
anism either forces or forbids the simultaneous (coincidence
in CCSL parlance) occurrence of a set of events (clocks ticks
in our case), which is explicitly defined as tuples labelling
the transition relations in a given process (automaton) — ex.
{ b. ¢. a. } inFig. 6issuch atuple. This technique to-
gether with a synchronous product operator (also known as
synchronous composition of processes) offers a very general
and elegant formalism well adapted for our purposes. More-
over, the process of constructing the synchronous product
unravels all the reachable states of the system that enables
the verification of temporal logic properties (safety and live-
ness) on the resulting LTS, through a technique known as
model-checking [3].

However, in the case of CCSL, due to the presence of
infinite clock relations, the construction of the synchronous
product cannot be achieved if the combination of constraints
does not bound the infinite behaviors. While theoretically
problematic — the termination of the composition operation
cannot be guaranteed —, in practice the occurrence of infinite
behaviors is considered more likely to be a bug than a fea-
ture. Hence it is important to statically decide if all infinite
relations are bounded, which is turn is a very challenging
problem, partially addressed in [22].

Moreover, in some cases, even if the parallel composition
pseudo-algorithm can theoretically terminate (finite state-
space), in practice we can encounter a state-space explo-
sion problem due to the exponential growth in the number of
emerging behaviors of the system with respect to the num-
ber of interacting processes (relations in our case), a hard
problem that challenges the scalability of computing the ex-
haustive set of reachable states. Nevertheless, for some types
of systems (ex. protocols, control-intensive application, etc.)
the possibility to formally verify safety and liveness prop-
erties through model-checking relieves the system designer
for the burden of testing, and delivers strong guarantees to



Figure 8: Exhaustive reachability analysis result for the SDF
example with channel capacity bounded at 4 tokens.

the system users. To address these cases the CLOCKSystem
toolkit supports the parallel composition of clock relations
through a pseudo-algorithms, similar to the one introduced
in [22]. This pseudo-algorithm is implemented in Smalltalk
using the BuDDy BDD* package [16] for clock assignment
resolution.

Fig. 8 shows the exhaustive state-space exploration re-
sults, obtained with CLOCKSystem, for the SDF example
introduced in Fig. 1. In this case the channel capacity of
each channel was bounded at 4 tokens to ensure a finite
state-space®. This result represents all the execution paths
(sequences of clock tickings) allowed by the specification,
and amongst them we can identify the cyclic trace presented
in Fig. 2a (emphasised with bold lines).

Traces and Simulation. To alleviate all these complica-
tions another well known technique can be used to prove
the presence of property violations, instead of their absence.
This technique, commonly known as simulation, extracts
particular executions traces from the set of possible behav-
iors by walking through the LTS automaton of the compo-
sition either explicitly or implicitly. In a practical setting
extracting a trace explicitly does not solve the previous is-
sues since the LTS should be constructed first, however can
prove very useful for understanding and debugging parallel
composition results. One particular execution trace can also
be extracted dynamically (implicitly) during the process of
parallel composition by simply choosing one and only one
transition to execute from the set of alternatives possible at
any given execution point. The decision procedure used to
select the transition to fire can rely on any heuristic decision
process, in the context of CCSL a number of such heuris-
tics were proposed in [1] and are currently implemented in
TimeSquare and CLOCKSystem.

In terms of simulation facilities, as opposed to TimeSquare
which implements a simulator by the direct interpretation of
the CCSL operational semantics (providing only trace ex-
tractions implicitly), the CLOCKSystem simulator relies on
the parallel composition of automata and offers the possi-
bility to use either the explicit or the implicit trace extrac-
tion techniques. In CLOCKSystem , the extracted execution

4BDD - Binary Decision Diagram

3 Note that the capacity bound — 4 — was chosen arbitrarily and any bound
> 2 would have produced similar results but with a smaller state-space for
2 and 3 and larger state-space for any value > 4.

traces are in fact just a subgraph of the resulting LTS graph.
Which can be either interpreted for a finite number of steps
or fed as input of other analysis tools. One example of such
a trace is presented in Fig. 2a, with its interpretation for 21
observable simulation steps in Fig. 2c. Note that our inter-
preter ignores the eventual invisible steps (the ones without
ticking clocks). Also note that through our encoding these
traces could be also interpreted as execution contexts, for in-
tegration with other verification approaches such as Context-
aware Verification [8].

5.4 Practical considerations

CLOCKSystem was implemented in Pharo Smalltalk version
3. For the implementation of the synchronous parallel com-
position of automata we rely on the use of BuDDy BDD li-
brary [16] linked and used from the Smalltalk image through
the high-performance NativeBoost FFI interface [5]. We im-
plemented a simple tri-state logic solver in Smalltalk which
can be used for the platforms where the BDD library is not
available. A simple editor for ClockSystem specifications
was developed using the Glamour toolkit, and the Roassal
framework was used visualisations [4].

6. Conclusion and Perspectives

In the context where our execution platforms are becoming
complex distributed systems on a chip, by integrating more
and more heterogenous computing resources (processor
cores, graphical accelerators, etc) the need for time-driven
reasoning becomes a necessity for software systems in gen-
eral. CLOCKSystem addresses the lack of support for reason-
ing about time and its implications in general-purpose pro-
gramming languages. While, currently the CLOCKSystem
and the associated tools are in their infancy, we believe that
our logical time embedding in Smalltalk already promises a
symbiotic relation with its host environment.

In this study we have presented CLOCKSystem, an em-
bedding of a logical representation of time into the Pharo
Smalltalk environment. This environment re-uses concepts
from the CCSL formalism, which was adopted for the for-
malisation of time specifications in the UML Marte environ-
ment, and extends this formalism by adding the possibility to
define new primitive “’clock relations” through an automata-
based approach. Moreover, the CLOCKSystem language bor-
rows the syntax of CCSL, for which it builds an DSL embed-
ded in Smalltalk through the usage of message-sends and re-
lations synonyms. By presenting a case-study encoding the
control aspects of Synchronous Data-Flow applications, this
DSL was compared to the abstract and TimeSquare speci-
fications and was shown to be readable and very close to
the abstract notation of CCSL. The importance of the con-
tribution was emphasised through five usage scenarios that
are enabled by the CLOCKSystem toolkit. And finally some
of the implementations details were discussed, a generic in-
terchange format was proposed, and some principles of the



CLOCKSystem execution semantics were briefly presented
emphasising some of the difficulties of the formalism.

Future research directions include: a) improving the
support for statically detecting if the constraint system
is bounded (finite state-space); b) extending the expres-
sive power of CLOCKSystem by integrating support for
dense-time representations, inspired by timed-automata for-
malisms; ¢) integration mechanisms for reasoning about
dynamic environments, where the “clock™ are dynamically
created during the lifetime of the application; d) studying
the potential incidence of CLOCKSystem constraints and
execution traces can have for state-space decomposition in
model-checking.
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