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Abstract

Bee is a Smalltalk dialect. Its runtime is exceptional in that
it is completely written in Smalltalk. Bee includes a minimal
kernel with on-demand loaded libraries, a JIT compiler, an
FFI interface, an optimizing SSA-based compiler, a garbage
collector, and native threading support among other things.
Despite being written in Smalltalk, Bee achieves promising
performance levels.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Code Generation; Compilers; In-
cremental compilers; Memory management (garbage collec-
tion); Run-time environments

General Terms

Keywords runtime, virtual machine, self-hosting, com-
piler, garbage collector

1. Introduction

Bee runtime is completely written in Smalltalk. This covers
kernel features like message dispatching, primitives, just-in-
time compiling, threading support and garbage collection,
among others.

The implementation of this environment in such a high
level language required solving key problems.

Insufficient meta-object semantics. Smalltalk includes a
very powerful metacircular class hierarchy. Yet it doesn’t
reify a key aspect of objects: it is not possible to access ob-
ject headers. This poses barriers to the implementation of
things like primitives, or garbage collectors. We slightly aug-
ment the smalltalk semantics by implementing underprimi-
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tives, extremely small and efficient methods that consist of
just a few inline-assembled machine instructions.

Breaking self-sustaining circularity. Bee is self-hosted,
which means it doesn’t require any external runtime support
library or virtual machine. Features like message lookup,
primitives and garbage collection are implemented within
the language itself. This characteristic means that the code
implementing some features often assumes and even re-
quires their existence to work. As an example, message
lookup is written in Smalltalk, therefore message lookup nat-
urally sends messages during its own execution. This leads
to endless lookup recursion unless a means to cut it is incor-
porated. We worked around this kind of problems by care-
fully dissecting code closures and by issuing ahead-of-time
nativization! of dispatch mechanisms.

A key aspect to support our solution is having control
of the Smalltalk JIT compiler and machine code assembler,
which are both written in Smalltalk. The JIT lets us trans-
form underprimitives into very low level and efficient pieces
of code, leveraging low-level actions in an object oriented
fashion.

The remaining of this paper is organized as follows. In
section 2 we describe the context of this Smalltalk dialect.
In section 3 we describe the three most relevant models for
the Bee runtime: the Bee metaclass hierarchy, the memory
model and the ABI model. The runtime implementation de-
tails are described in section 4. We focus on the implemen-
tation of method lookup and primitives, but we also describe
the modularity in the design, and the mechanism to perform
low-level operations from Smalltalk, id est., the underprim-
itives. Current state of Bee development is described in sec-
tion 5. An analysis of performance can be found in section 6.
We culminate this work with a discussion on related work in
section 7 and a conclusion with final remarks in section 8.

' We use the term nativization to mean generation of machine instructions.
This is to contrast with the word compilation, which we use to refer to
bytecode generation; or the word jitting, which we use for just-in-time
nativization



2. Context

High level languages usually allow a more dynamic pro-
gramming style by delaying bytecode and machine code
compilation, avoiding static typing and adding automatic
garbage collection, among other things.

High level languages require runtime support to offer all
these functionalities, usually in the form of a Virtual Ma-
chine. These functionalities have runtime costs that drag
down performance of user programs. Besides, higher level
languages discourage or even disallow low level actions like
direct access to memory for the sake of program safety. Even
if possible, accesses to memory are done through abstrac-
tions that try to validate each action, heavily hurting perfor-
mance.

This combination of characteristics makes it difficult to
implement runtime support itself in high-level languages,
resorting instead to low-level ones.

Low level languages, on the other hand, usually require
static compilation to machine instructions before execution,
type specifications throughout the code and manual memory
management. In exchange of this, low level languages usu-
ally generate highly efficient code.

But implementing runtime support libraries in high level
environments can yield a better understanding of the prob-
lem’s domain [20]. Runtime programmers can take advan-
tage of the environment tools and abstractions. Instead of
spending their focus simulating code execution in their
heads, they can make use of the plethora of inspectors,
browsers and debuggers to give shape to more readable and
easier to understand solutions.

Finally, programmers want and should be able to know,
understand and improve the implications and limitations of
the runtime they are running on [14]. This is eased if the
programming language of the runtime is the same than the
language they use everyday for writing code.

3. Overview of Bee metaclass and memory
model

Before delving into complex Bee topics like machine code
generation, lookup and primitives implementation, we give
an overview of a small group of Bee details that will help
understanding the whole system.

3.1 Bee metaclass hierarchy

Bee follows as a base Smalltalk-80 class hierarchy [9], with
some major deviations. The root class in the hierarchy is
ProtoObject, whose super class is nil; Object subclassifies
ProtoObject.

A big difference between Bee and Smalltalk-80 lays in
its metamodel. The metaclass hierarchy, while similar, has
been severed to allow dissociating class shape and object
protocol. This simplifies the usage of objects of a same
class with different behavior. The class Behavior truly refers
to object behavior. It is not the superclass of Class and
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Figure 1. Regular and extended object headers

Metaclass. Instead, it is a variable size collection of method
dictionaries. During lookup, the object’s behavior will be
traversed in order until a method is found for the searched
selector. Thus, an object’s behavior defines how the object
responds to messages.

Both Class and Metaclass subclassify Species. Species
includes most of Smalltalk-80 protocol for ClassDescrip-
tion, which handles class and instance variable names, in-
stance creation and more.

3.2 Memory model

In memory, objects are stored as an array of slots or bytes
(depending on whether they are pointer o byte objects) pre-
ceded by a header. Slots that don’t reference Smalllntegers
have the address of the first slot or byte of the referenced
objects, just after the header. We call these OOPs (Object
Oriented pointers).

Given an object, its header describes many of its prop-
erties, like size, hash, shape and behavior. It is composed of
various bit fields. It occupies 8 bytes in regular cases, or 16 if
it is an extended header. Extended headers are needed for big
objects (bigger than 255 elements) and for ephemerons [10].
The first doubleword of a regular header describes size, hash,
shape and garbage collection status. The second doubleword
is an OOP to the object’s Behavior. When extended, the
header contains two additional doublewords that are placed
immediately before the regular header. The size field of regu-
lar header is set to 4 and the isExtended bit is turned on. The
first doubleword of the extended header is set as a copy of
the first doubleword of the regular header. The second word,
on the other hand, is set to the actual size of the object. The
size of the object represents the number of slots or bytes in
memory of the object.

Notice that objects don’t have a direct pointer to their
class. Their class is determined by the class field found in
the first method dictionary of their Behavior. Figure 1 shows
the memory layout of object headers.



Smalllntegers are an exception to these memory layout
rules, they are tagged. Smalllntegers are not allocated in
the heap. When a slot is stored with a Smalllnteger, instead
of writing a memory address, we write the numeric value
shifted one bit to the left and incremented by one. As objects
are aligned in memory to 4 bytes addresses, Smalllntegers
can be quickly distinguished from regular objects. This is
a common technique that was already present in the 16-bit
implementation of Smalltalk-78 [15], and adopted by many
other virtual machine implementations later [6, 13].

We extend Smalllnteger tagging with the use of small
pointers. Smalllntegers represent numbers from —230 to
230 — 1, as they fit in a 32-bit word with the least signifi-
cant bit clamped at 1. When dealing with pointers, we use
standard Smalllntegers to do arithmetic calculations. This
limits us to pointers with addresses in the 0 to 230 — 1 range,
exactly 1GB of memory.

Conversion of pointers to Smalllntegers is done by shift-
ing the pointer to the left 1 bit and adding 1 to the result. But
as pointers are always 4 byte aligned, we can convert them
to Smalllntegers by just setting their least significant bit to
1, without shifting. The small integer represented by such a
doubleword is the memory address divided by two. We call
this a small pointer. Small pointers look and behave exactly
as Smalllntegers, the programmer is responsible of dealing
with conversions when needed. Thanks to small pointers, we
are able to support up to 2GB of memory.

3.3 Bee ABI?

Bee assembler models a Stack architecture with a group
of very specific registers, as described in [1]. These are:
R (receiver and result), arg (argument), temp, self, method
environment context, stack base and top of the stack. Both
R, arg and temp can change between bytecode and bytecode,
and are saved by the caller during message send. Self doesn’t
change from bytecode to bytecode but must be restored
before returning from a method. Arguments are passed in
the stack, pushed left to right, and are callee cleaned.

Currently, Bee only supports x86-32 bit architecture, and
we map R to EAX, arg to EDX, temp to ECX, self to ESI,
method environment context to EDI, frame pointer to EBP
and top of the stack to ESP3. We show a stack frame for
this ABI in figure 2. In the example, the method receives two
arguments, contains two temporary variables and at least one
block closure.

Most Smalltalk methods generate a new stack frame on
activation, unless they are very short and don’t need one.
After pushing the previous frame pointer, they push the
receiver and the compiled method. If necessary, they also
push the method environment context. On exit, the stack top
is set to the frame pointer, the old frame pointer is popped

2 The application binary interface defines low level conventions like param-
eter passing and saved registers across calls

3 this convention is very similar to Pascal

temp 2 ‘/:SE—QO
temp1 ebp-16
env ebp-12
Object>>#foo:bar: ebp-08
self ebp-04
prev.-ebp — ebp
@ret. address ebp+4
right-arg ebp+8
left arg ebp+12

Figure 2. Bee Stack frame layout for Object>>#foo:bar: in
memory on x86

and ret n instruction transfers control back to the caller
cleaning n arguments.

4. Bee implementation details
4.1 Bee method nativizer

All methods in Bee are objects of the class Compiled-
Method. Methods are compiled to bytecodes first, and then
nativized. Among other things, CompiledMethods contain
slots pointing to their bytecodes and to their NativeCode,
a reification of machine code. NativeCode, in turn, con-
tains a slot that points to the actual machine code, which is
stored as a ByteArray. NativeCode also contains an array of
references, with their respective offsets inside the machine
code ByteArray. In this way, machine code is abstracted, can
be easily accessed by the image when needed (i.e. during
lookup), and needs little special treatment by the runtime, as
shall be seen later.

To generate machine code from a method’s bytecodes, an
instance of the class BeeMethodNativizer iterates over the
bytecodes writing their corresponding assembly.

As in Smalltalk-80, Bee Smalltalk contains special byte-
codes for the most common arithmetic and logic opera-
tions. Our compiler is also smart enough to transform sim-
ple blocks, such as the ones used in #ifTrue:, #ifFalse:
or #whileTrue: messages, into equivalent comparison and
jump bytecodes. Besides, Bee is also capable of doing spe-
cial case message send nativization for selectors that are
not associated with a special bytecode. We detail both ap-
proaches next.



4.1.1 Inline nativization of messages through special
bytecodes

The method nativizer generates specific assembly for most
cases of special arithmetic and logic selectors. As example,
let’s consider addition. At compile time, when encountering
a #+ message send, the compiler will output a Plus byte-
code. At nativization time, the nativizer will assemble a cou-
ple of instructions to perform inline addition if possible, and
to send the #+ if not. First it will insert a Smalllnteger test
for both the receiver and the argument. Then it will assemble
the addition and a check if the result fits in a Smalllnteger.
Finally it will assemble the #+ message send. At runtime,
if all checks pass, the #+ send will be skipped; if any of
the mentioned checks fail, it will fallback to the message
send. Even if this is mainly done for performance reasons,
it has a deep impact in other parts of the system, easing the
implementation of components like lookup and the garbage
collector.

4.1.2 Custom nativization of message sends through
send inliners

When the nativizer passes through a generic message send
bytecode, it delegates the machine code generation to differ-
ent assembly generators, or send inliners. The method na-
tivizer associates selectors with different send inliners. In
the typical case, the associated send inliner will assemble
the necessary instructions to call lookup. For some specific
selectors, on the other hand, the nativizer will associate a
different send inliner and generate different assembly.

Being in control of the bytecode nativizer from Smalltalk
is critical for the implementation of these different send
inliners, which are essential to leverage the development of
Bee runtime in an efficient and object oriented manner. They
are also key for system self-sustainability.

Different send inliners include the assembly send inliner,
which generates special case machine code depending on
the selector, and both lookup send inliner and invoke send
inliner which generate machine code to call lookup and
invoke respectively.

Underprimitives. These are a minimal set of selectors that
are resolved with inline assembly, instead of sending a mes-
sage. An example of an underprimitive is # _isSmalllnteger.
When seeing this selector, the assembly send inliner directly
inserts assembly to check if the object is tagged.

assembleTestSmalllnteger
| integer |
integer := assembler testAndJumplflnteger.
self loadObject: false.
assembler uncontionalSkip: [
assembler jumpDestinationFor: integer.
self loadObject: true]

Underprimitives are a convenient abstraction of very low-
level operations. They are limited to a maximum of two
arguments. They assume the receiver is in R register and
that the first and second arguments lay in arg and temp
respectively, if present. A few dozen of underprimitives are
enough to cover all the low-level actions needed for the
implementation of the entire system.

4.1.3 Lookup and invoke

Execution of Smalltalk code involves execution of a message
dispatching algorithm. In Bee, this algorithm is written in
Smalltalk. For that reason, it is necessary to cut the recursive
lookup chain to avoid an infinite recursion.

We shall distinguish two mechanisms when issuing what
is generically called lookup: method lookup and method in-
vocation. The first refers to the action of finding the corre-
sponding compiled method to be later executed. The second
one refers to the action of transferring control to the com-
piled method’s native code.

In the next snippet we show the # _lookupAndInvoke en-
try method. The code is straightforward: # _lookup: fetches
the corresponding compiled method for the selector, or nil
if none was found, in which case the message to send is
#doesNotUnderstand:. The compiled method is prepared
for execution and finally control is transferred to the found
method’s native code. Notice that Bee uses monomorphic in-
line caches [8], so lookup includes call-site patching code.

_lookupAndInvoke: aSymbol

| cm |
cm := self _lookup: aSymbol.
cm == nil ifTrue: [

cm := self _lookup: #doesNotUnderstand:.
self _transferControlTo:
cm noClassCheckEntrypoint _asNative].
cm prepareForExecution; patchClassCheckTo: self behavior.
self
_transferControlDiscardinglLastArgAndPatchingTo:
cm noClassCheckEntrypoint _asNative

Lookup. The native code generator used for lookup is the
same than the one used for any other Smalltalk methods,
with a slightly different configuration for message sends.
When nativizing the # _lookup: message send, it will gen-
erate machine code according to the configured send inliner.
If using the lookup send inliner, this code would fall into an
infinite recursion. To solve this problem, we calculate a code
closure. The implementation of # _lookup: is unique to all
system, and we know beforehand the compiled method that
would be found if # _lookup: were looked up. We can assure,
by carefully writing lookup code, that the same happens to
all the messages involved in lookup. Then, when nativizing
lookup methods, we can set the send inliner to an invoke
send inliner. An invoke send inliner pushes the unique com-
piled method for that selector, instead of pushing a generic
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selector, and calls an invoke mechanism, instead of lookup.
Figure 3 shows the message send graph of #lookupAndIn-
voke:, for which the method closure is calculated. We man-
ually configure the method nativizer send inliners, so that
message sends get nativized as invokes to the methods to be
found for the respective selectors.

Invoke. We detail invoke implementation next. It is very
similar to the end of #lookupAndInvoke:. The main differ-
ence is that invoke patches the call site to point to the native
code just after the prologue. This avoids a class check in the
next call (which would fail if the next receiver is of a differ-
ent class).

_invoke: aCompiledMethod
aCompiledMethod prepareForExecution.
self _transferControlDiscardinglLastArgAndPatchingDirectTo:
aCompiledMethod noClassCheckEntrypoint _asNative

There is a last subtlety with invoke. Consider the nativiza-
tion of #prepareForExecution message send. Of course, if it
were nativized with a lookup send inliner, it would cause an
infinite recursion at runtime. But if nativized with the very
same invoke send inliner, it would also cause an infinite re-
cursion of invokes. The trick to solve this is to nativize #_-
invoke: with a shortened and inlined version of itself. The
following snippet shows the resulting code, where all mes-
sage sends are actually nativized inline, and can be resolved
without sending any real message.

» instanceBehavior

_lightweightInvoke: aCompiledMethod

| nativecode bytes classCheckDisplacement address |

nativecode := aCompiledMethod _basicAt: 2.

bytes := nativecode _basicAt: 1.

classCheckDisplacement := 16rD.

address := bytes _asSmalllnteger +
classCheckDisplacement.

self
_transferControlDiscardinglLastArgAndPatchingDirect To:

address _asNative

To finish this section we explain why _lookupAndInvoke:
can be a simple Smalltalk method with normal arguments,
and how the control transferring works.

Arguments passing. As can be derived from section 3.3,

just before the call to method lookup, all method arguments
have been pushed in left-to-right order, and lastly, the selec-
tor was pushed and lays in the top of the stack. # _looku-
pAndInvoke: takes advantage of this fact. Inside #_looku-
pAndlInvoke:, the references to the first and only argument
will be transformed by the nativizer to the same address it
would do in any case: ESP+8. This works perfectly until
the return point.

Transefering control. At the epilogue of # _lookupAnd-
Invoke: and #_invoke:, just after restoring frame pointer and
stack top, the stack still has an extra argument, the selector or
compiled method, respectively, that needs to be removed. If
not, the method to be activated would wrongly see the selec-
tor as it rightmost argument. There is an extra complication,
because after the selector was pushed, the call to lookup was
issued, and the return address was pushed into the stack. _-
transferControl To family of underprimitives write the same
assembly that is commonly issued on method exit, but also
solve this last argument problem by issuing pop [esp], an in-
struction that pops the top of the stack into its next position.
Besides, as last instruction, it assembles a jmp instruction,
instead of a ret n, seamlessly transferring control to the ac-
tual method, which doesn’t need any special stack treatment.

4.2 Access to object headers

Thanks to underprimitives, it is possible to access raw object
headers. Yet, these underprimitives are a bit too low-level
for common usage. As an example, checking the size of an
object requires reading the header bits to determine if it is
extended, and then to access the corresponding size field,
which might be a byte or a whole slot. Implementing all this
with an underprimitive would be overkill, as it would require
too much assembly writing. Instead of that, we implemented
a set of methods that abstract access to object headers within
Smalltalk code. For example, checking if an object is ex-
tended can be done with the following line of code:



-isExtended
“(self _basicFlags bitAnd: IsExtended) = IsExtended

Again, these are methods written in Smalltalk, so we can
easily do complex actions. An object header can be marked
as bytes with:

_beBytes
self _flagsSet: IsBytes.
self _isExtended ifTrue: [self _extendedFlagsSet: IsBytes]

_extendedFlagsSet: mask
self _extendedFlags: (self _extendedFlags bitOr: mask)

The size of an object can be obtained from its header
with:

_size

| total |

total := self _isExtended
ifTrue: [self _extendedSize]
ifFalse: [self _basicSize].

“(self _isBytes and: [self _isZeroTerminated])
ifTrue: [total — 1]
ifFalse: [total]

These methods abstract away most problems of dealing
with object headers in a clean, object oriented style. A dis-
cussion about their efficiency is done in section 6.3.

4.3 Primitives

Bee doesn’t implement primitives in the standard Smalltalk-
80 way. The reason for this are undermethods, underprimi-
tives and inline nativization of bytecodes. We begin with the
description of the simplest primitives, and finish the section
with the most complex ones, showing how most of the code
can be implemented in plain Smalltalk, with the help of only
a few underprimitives.

It is also important to remark that in current Bee itera-
tion garbage collection has not yet been enabled. This eases
implementation of primitives but will need revision when
garbage collection is enabled again.

We start explaining this by showing a very small exam-
ple. Consider the method ProtoObject>>#size. While in
other Smalltalks this will need a primitive, in Bee it will be
implemented as:

ProtoObject >> #size
“self _size

The implementation takes advantage of the reification
of the object header, which can be accessed through under-

methods. Other good examples are ProtoObject>>#behavior

and ProtoObject>>#class

ProtoObject >> #behavior
“self _isSmalllnteger
ifTrue: [Smalllnteger instanceBehavior]
ifFalse: [self _basicAt: 0]

ProtoObject >> #class
“self behavior mainClass

Notice that Behavior has been reified, so finding the class
can be delegated to it. ProtoObject>>#== shows the ben-
efits of inline nativization of bytecodes:

ProtoObject>>#== other
“self == other

This will be nativized as a pointer comparison by the
nativizer. If the pointers are equal it will load true, else it will
load false. ProtoObject>>#perform: is a good example of
the benefits of the reification of lookup.

ProtoObject>>#perform: aSymbol
aSymbol arity = 0 ifFalse: [“self error: 'incorrect arity’].
“self lookupAndInvoke: aSymbol

Unlike Smalltalk-80 primitives, here there is no special
concept of primitive failure. When a wrong arity is de-
tected in normal Smalltalk code and doesn’t require a sec-
ond chance method activation. Careful readers will notice
that the sent message is #lookupAndInvoke: and not #_-
lookupAndInvoke:. The difference is that the former doesn’t
patch the call site during invocation, which would be wrong
in the case of perform. The main advantage of implementing
low-level functionality in Smalltalk is that we can rely on
existing code. For example, calculating selector arity was
already implemented code. This gets an even bigger impact
when writing more complex primitives. Consider the imple-
mentation of #value

BlockClosure>>#tvalue
self argumentCount = 0 ifFalse: [“self arityError].
self _transferControlTo: self code

Notice how natural this code feels. code returns the
address of the block’s native code. The only addition to
Smalltalk semantics needed was the # _transferControlTo:
underprimitive. Other variations with a different amount of
arguments are very similar.

The implementation of #become: is very interesting. Re-
member that #become: should scan all Smalltalk memory
looking for references to the receiver, and replacing them
with the argument. Besides, the process’ stack, which is not
inside a GCSpace, should also be visited.



ProtoObject>>#become: anotherObject
Memory current make: self become: anotherObject

Memory>>#make: anObject become: anotherObject
1 to: spaces size do: [:i | | space |
space := spaces at: i.
space make: anObject become: anotherObject].
ProcessStack current make: anObject become:
anotherObject

#become: is split in two stages. The first stage traverses
each existing GCSpace, looking for references to the source
object, and replacing them with the target one.

GCSpace>>#make: anObject become: anotherObject
| objectBase object endOop |
objectBase := self base.
endOop := self nextFree.
[objectBase < endOop] whileTrue: [
object := (objectBase + 8 _asPointer) _asObject.
object _isExtended
ifTrue: |
objectBase := (object _basicSize * 4)
_asPointer + objectBase.
object := objectBase _asObject]
ifFalse: [
objectBase := objectBase + 8 _asPointer].
objectBase := objectBase + object
_sizelnBytes _asPointer.
0 to: object _pointersSize — 1 do: [ii |
(object _basicAt: i) == anObject
ifTrue: [object _basicAt: i put: anotherObject]]]

After all spaces have been scanned, the stack is traversed
to find any remaining slot to change.

ProcessStack>>#make: anObject become: anotherObject
| frame size endMarker nextFrame |
frame := self _framePointer.
endMarker := 0 _asObject.
[
nextFrame := frame _basicAt: 1.
nextFrame == endMarker]
whileFalse: [| first |
size := nextFrame _asPointer —
frame _asPointer // 4 _asPointer.
first := 3.
self
make: anObject
become: anotherObject
in: frame
count: size
startingAt: first.
frame := nextFrame]

GCSpace traversing has an extra subtle difficulty. The im-
plementation avoids using real block closures. Real block
closures require an environment, which is nothing more than
an array to be allocated in the current GCSpace. This ar-
ray might reference the source object and get modified dur-
ing scan. If this happens, the source object might not be
recognised any more. Besides #ifTrue:ifFalse: family of
messages, both #whileTrue:, #whileFalse: and #on:do: are
also inlined by the Smalltalk compiler. For example, when
finding a #whileTrue: message send, the compiler inserts
a jump-false bytecode at the block guard site, targeting the
code after the argument block. It also inserts an uncondi-
tional back-jump at the end of the argument block, targeting
the beginning of the guard block.

We close this section by showing Bee implementation of
the most complex primitives, those related to blocks. We
shall first give an overview of block mechanisms in Bee.
We already showed the implementation of #value. Here
we focus in the most difficult to implement piece, which is
related to #ensure:. Consider the code

workSafe: aBlock
[ aBlock value ] ensure: [ resource free ].

The meaning of this method is that after aBlock value is
run, #free must also be run, no matter what happens in the
block. To better understand the problem we can think how
the stack looks like just after aBlock value, and how it will
evolve. Somebody has called #workSafe: passing a block.
To give a view of some of the different possibilities let’s just
assume it was:

sendWorkSafe
“self workSafe: [ a == b ifTrue: ["self] ]

In the stack we have #sendWorkSafe: frame, followed
by #workSafe: frame. Next will be #ensure: frame. We can
ignore what it does for now and assume that after a few
extra frames aBlock frame will be placed in the top of the
stack. The complete stack is shown in figure 4. Now, if a
equals b, the ifTrue: branch will be executed, returning from
#sendWorkSafe method. In stack frame terms, this means
that stack should be unwound until #sendWorkSafe frame
is found, and finally that frame should also be popped, re-
turning control to #sendWorkSafe sender. But as there is an
ensure in between, unwinding should pause when reaching
the ensure stack frame, the ensured block should be executed
and only after that unwinding should be continued. In the
case that a was not equal to b, aBlock should finish its ex-
ecution normally, and control should flow back to #ensure:
normally, where it will activate the ensured block and return.

To allow the first case, #ensure: marks the stack to indi-
cate an unwind stop point. In the case of premature return
from a block, the stack will be traversed to find the returning



environment /:55—08
2Block prev:.-environment ebp-04
prev.-ebp «— ebp
@ setUnwind ret: address’| ebp+4
nil- (temp.2) result
nil (temp. 1) context
BC>>#setUnwind:
#setUnwind: FrameMarker
prev:-ebp
@ ensure: ret. address
twoArgsBlock arg. 1
prev: environment
BC>>#ensure:
Sensure: ensureBlock receiver
prev:-ebp
@ workSafe: ret: address
terminationBlock arg. 1
prev.-environment
Object>>#workSafe:
SworkSafe: ensureBlock receiver
prev. ebp
@sendWorkSafe: ret: addr:
aBlock arg. 1
prev.-environment
Object>>>#sendWorkSafe:
#sendWorkSafe: receiver
prev.-ebp
@ret:-address

Figure 4. Stack frame layout after aBlock activation

method’s frame. If a marker is found before that unwinding
will stop. Here we show the code run when returning from a
block.

BlockClosure>>#return: result
| home environment saved frame |
home := self methodEnvironment.
home == nil ifTrue: ["self sendCantReturn].
frame := BeeFrame current.
[
frame moveNext.
frame isZero ifTrue: ["self sendCantReturn].
frame hasBlock ifTrue: [
saved := frame savedEnvironment.
environment := frame environment].
frame hasMarker
ifTrue: [“self unwindUntil: frame context: saved
returning: result].

environment == home]
whileFalse: [].
saved == nil ifFalse: [saved _restore].

“frame current
_dropUpperContextsReturning: result
popping: self method argumentCount _asNative

a BeeFrame is a reusable stack frame reification. When
initialized to current, it points to the top of the stack. It
can be moved next to point to the next frame, and eases a
lot the manipulation of stack frames. The #return: method,
unwinds frame by frame looking for a marked frame or the
returned method’s frame. In the latter case it will drop all
frames up to that point.* In the former, it will unwind just
until the marker:

BlockClosure>>#unwindUntil: frame context: context
returning: result
frame first Temporary: self; receiver: frame nextlnFrame
receiver.
context == nil ifFalse: [context _restore].
frame previous _dropUpperContextsReturning: result
popping: 0 _asNative

The underprimitive used to drop stack frames is the same.
This last method also does two modifications to the frame to
be activated: changing its receiver and its first temporary. To
explain why this is needed, we first show how the stack is
marked:

4 When walking the stack it will eventually find the method’s frame, which
has pushed an environment that is the same than the block’s home



BlockClosure>>#setUnwind: twoArgumentBlock
| context result |
result := self valueMarked.

context == nil ifFalse: [twoArgumentBlock value: context
value: result].
“result

BlockClosure>>#valueMarked
| receiver frame |
self argumentCount = 0 ifFalse: [“self arityError].
frame := BeeFrame current moveNext.
receiver := frame receiver.
frame receiver: FrameMarker.
receiver _transferControlTo: self code

#setUnwind: method marks the stack. Notice that con-
text, the first temporary is never directly assigned but
checked for nil. Now remember the previous snippet of code,
when unwinding to the marked stack frame. That code sets
the first temporary of the frame, effectively making it not
nil. Then, if context is not nil, it means the stack was un-
wound. If nil, there wasn’t any non local return and the re-
sult is returned. The two argument block is then a block that
is executed on marked stack unwinding. #ensure: uses it
accordingly to guarantee that the ensured block is always
executed.

BlockClosure>>#tensure: terminationBlock
| result |
result := self setUnwind: [:context :return |
terminationBlock value.
context return: return].
terminationBlock value.
“result

Finally, #valueMarked code is similar to #value, but it
takes the receiver and overwrites it with the marker. This
is fine, as #valueMarked receiver can be restored from the
previous stack frame (it is always sent by the same block).

4.4 Modularity

The strongest design principle behind Bee is minimality.
Every aspect is split into smaller pieces as much as possible.
Bee is divided into a very small kernel library, and a set of
other libraries that can be loaded at runtime. Bee is self-
hosted. This means it doesn’t need to run on top of a Virtual
Machine, all its runtime support is written in Smalltalk.

Bee libraries. Bee code is distributed through Smalltalk
libraries, which are binary files that contain objects, includ-
ing compiled methods and their native code.

Libraries are implemented as a heap of objects preceded
by a description of the heap. To make loading fast, objects
are stored almost as they will lay out in memory after loaded.
The kernel includes a library loader, so it knows how to

take the objects out of the library and how to plug them to
the system. New classes are added to the Smalltalk global.
New methods of already existing classes are inserted into
their respective method dictionaries. All the needed actions
are carried out to ensure that after loading the system stays
consistent. Because of being binary based, library load time
is small, compared to the time needed for compilation and
nativization.

Bee kernel. Bee pushes Smalltalk modularity to new lim-
its. Its kernel doesn’t include a Smalltalk compiler, a na-
tivizer, or a garbage collector. All of these functionalities are
optional, and can be quickly loaded at runtime through li-
braries.

Bee is distributed as a native executable file. This file con-
tains inside a kernel library with the main Smalltalk objects
and code. The kernel library format is the same than the one
used for any other library. The only difference is that it is
packed inside a windows PE executable and that it contains
no references to external objects. This kernel includes the
minimal objects needed to be self-hosted. Main classes are
placed in kernel, with their main methods. Methods contain
their already nativized machine code. This is key for self-
hosting. The entrypoint of the PE file is set to point to the
machine code of a bootstrapping method. When execution
starts, this method performs a basic initialization and then
looks at the command line arguments to know what to exe-
cute next.

In Bee libraries, methods can be stored with or without
their native code. Bee compiler and nativizer are placed in
separate libraries, not included in the kernel and loaded on
demand. Methods of libraries that include native code can
be directly executed without loading the nativizer library.
Libraries that don’t include native code require loading the
nativizer. When the nativizer is plugged, attempts to execute
methods that don’t contain native code automatically trigger
their nativization. Of course, the methods of the nativizer
library must be stored with their native code, as the native
code of the nativizer is required to nativize methods. If both
compiler and nativizer libraries are loaded, Bee will be able
to execute arbitrary strings of Smalltalk code. This kind
of modularity gives place to interesting possibilities. It is
possible to create minimal system that is dynamic and yet
doesn’t include a compiler nor a nativizer within itself. To
allow dynamism, the system could allow remote injection
of compiled methods with their native code into the system
from the outside world. This may prove useful for hardware
platforms were resources are scarce.

5. Current Bee development

Bee is implemented on top of another host Smalltalk. This
strategy lets us do development within a full blown envi-
ronment. Many pieces of the system can be developed and
tested in this environment. For example, Bee nativizer can
be configured to generate machine code compatible with the



host environment. This allows testing most, if not all the na-
tivizer functionality within the host.

In cases where testing within the host is not possible, we
still can write the code inside the environment, and generate
an executable file containing the kernel image and a library
with the tests. Testing is conducted from the host. From it we
spawn a Bee process, specifying the name of the test library
as a command line argument. Test libraries are constructed to
return value of 0 when the tests fail, or 1 if they succeed. Dy-
namism is transcendent, as changes done in the host environ-
ment can usually be tested immediately. Some other changes
require the regeneration of the test libraries, which happens
in just a few seconds. Only from time to time a change re-
quires writing the kernel bootstrap image, because the sys-
tem is split in libraries. Even in that case the time required is
small, a few dozen of seconds.

As of June 2014, we are not yet able to directly debug
Bee when running on itself. When this is needed, we re-
sort to native code debuggers and disassemblers. For typical
Smalltalk code, this will be solved after we plug the host’s
Smalltalk debugger and inspectors. Yet, a Smalltalk-written
native code debugger would also be helpful to debug low-
level code in a high-level environment.

In the previous iteration of Bee, a handful of garbage
collectors were implemented. This includes full space mark
and compact, and generational garbage collection. Yet, in the
current form of Bee, we haven’t finished plugging these col-
lectors to the system. Therefore, there is no garbage collec-
tion available at all, until we adapt the old collectors.

6. Performance

Bee has been written with functionality and code quality as
main priorities. Even though we haven’t focused in perfor-
mance yet, we still did implement some optimizations to ob-
tain good enough performance for development. The philos-
ophy has been to design the system with no inherent ineffi-
cient features, but to leave optimizations for later stages. The
flexibility of the system facilitates research in this area.

6.1 Lookup optimizations

Bee is not interpreted, but ahead and just in time nativized.
Besides, it utilizes monomorphic inline caches and different
send inliners to enable fast dispatch. Assembly send inliners
allow fast access to object headers, through directly writ-
ing machine code. Invoke send inliners provide for message
sends without lookup, which is needed for lookup. We have
taken advantage of this and configured the method nativizer
to always use invoke for a set of very frequently sent mes-
sages. Through careful profiling and benchmarking we were
able to remove the biggest performance bottlenecks.

The naive #_lookupAndlnvoke: method that was shown
in section 4.1.3 was improved with a global lookup cache
that speeds up lookup in the cases where mononomorphic
inline cache fails. Currently we know that lookup is still a

bottleneck, and we are working on the implementation of
different optimizations to boost performance. When global
cache fails standard lookup is done. Standard lookup is ex-
tremely slow, because it performs a linear scan in the method
dictionaries of the object’s behavior.

6.2 Optimizing compiler

The code generated by the JIT compiler is very efficient.
However, to boost performance further, hot code paths could
and should be made even more efficient. There is abundant
research in this area that guarantees that important speed
ups can be obtained. Adaptive optimization has been deeply
studied, specially on Self [5, 11, 12, 19].

We have implemented an optimizing compiler. This com-
piler is run only for sets of methods that are known to be
important performance-wise (for now, methods are selected
manually). The optimizing compiler starts from an abstract
syntax tree to construct an SSA-based call-flow graph of
intermediate instructions [16, 18]. Through many stages it
transforms this intermediate representation to finally emit
native code. The different stages include speculative method
inlining, peephole optimization, register allocation to finish
in machine code emission. While still in early stages, this
compiler has already provided a noticeable boost in perfor-
mance.

6.3 Benchmarks

To measure performance we have run two different sets
of benchmarks an compared the results against two other
Smalltalk implementations: the host Smalltalk and Pharo [4].
In the case of Pharo, we have both run benchmarks with and
without the JIT compiler.

The benchmark set is small but gives a view of the current
Bee efficiency and also a preview of feasible performance
levels that can be expected in Bee.

Slopstone is a well known Smalltalk benchmark that
measures low-level operations as integer addition, block
activation, object creation, and others. We split the results
to give a better overview and also added some new sub-
benchmarks to inquire about specific performance bottle-
necks. Integer and float addition were tuned to run more
iterations than in default Sloptone, because their execution
time was so small that could not be correctly measured.

Some low-level performance details come to light in Fig-
ure 6.3. Results in this benchmark are highly diverse. On
many cases Bee is between 3X and 6X slower than the
host environment, with some notable exceptions. On the
bright side, inline jitting makes integer addition even faster
than the host virtual machine. On the other hand there are
some notorious bottlenecks present on float operations, per-
form, monomorphic object creation and polymorphic ob-
ject creation’. This last case is extremely slow because the

5 With this we refer to creating objects of different classes
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StringAccess 0.44 0.88 5.44
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Figure 5. Normalized Slopstone execution times , relative
to host virtual machine (lower is better).

monomorphic inline cache is not able to bear efficiently with
polymorphic message sends.

Smopstone measures medium-level Smalltalk opera-
tions, which include recursive block and method calls, col-
lection building and enumeration, streaming, and sorting. In
a lower level, it performs arithmetic operations (mostly in-
teger, with some fractions and floats), string manipulation,
and streaming. As with Slopstone, we split the benchmark
results to give a better overview.

In the case of medium-level operations we get an overall
slowdown of around 12X, as shown in 6.3. This falls in
line with the results of the previous benchmark if we take

B Host M Pharo JIT © Pharo NO-JIT m Bee
Arithmetic and collections
Fractonacci

Primes

Strings and collections

Overall
0 2 4 6 8 10 12 14

Benchmark Pharo JIT Pharo NO-JIT Bee
Overall 0.7 2.34 11.98

Strings and colls. 1 3.17 14
Primes 0.75 1.83 12.86
Fractonacci 0.73 4.17 12.5
Arithm. and colls. 0.67 2.97 6.41

Figure 6. Normalized Smopstone execution times , relative
to host virtual machine (lower is better).

into account that the slowest results highly drag performance
down.

7. Related work

Squeak[13] is a self-hosted Smalltalk implementation. The
code of the virtual machine is written in slang, a subset of
Smalltalk. Slang code is automatically translated to C source
and then compiled with a C compiler, allowing for very good
performance. Yet, the code written in slang is not object
oriented and more difficult to understand and modify than
standard Smalltalk code. Programmers have to be familiar
with C programming, compiling and debugging tools.

PyPy[17] is another example of a self-hosted virtual
machine. PyPy consists of an interpreter and a translation
framework. The interpreter code is written in RPython, a
restricted subset of Python. Unlike with slang, PyPy’s trans-
lator operates on RPython source through many stages of
analysis and optimization. Different backends allow genera-
tion different outputs. The main backend writes C sources.

Jalapefio/Jikes RVM [2, 3] is a research project that im-
plements a Java virtual machine in Java. Jikes implements
different types of garbage collectors, supports multithread-
ing and has different compilers that provide for adaptive op-
timization and highly efficient code. Access to object head-
ers is done through Magic, a set of methods that are not im-
plemented in Java but assembly, and allow direct access to
memory and processor control.



Maxine JVM [21] is another Java virtual machine done
in Java. While it shares many ideas with Jikes, Maxine dis-
tinguishes itself by its inspector, which lets the developer
visualize and debug all the state of the virtual machine.

Tachyon [7] is a self-hosted Javascript virtual machine.
Tachyon does not use a bytecode representation, it compiles
directly to machine code. The compiler operates on different
intermediate representations, applying different optimiza-
tions. To augment the semantics of the language, Javascript
syntax is extended with type annotations and primitives that
allow direct access to memory.

Klein is a metacircular virtual machine for Self written in
Self[6, 20]. It enjoys a fully object-oriented design. Through
the use of mirrors it achieves great code reuse and is able
to access meta-object properties. Thanks to this, Klein can
be remotely debugged from other PCs. Reactivity is highly
appreciated and the environment provides many tools to cre-
ate the illusion that the system is made of tangible, physical
stuff.

8. Conclusions

Bee project was started with the implementation of a JIT
compiler that recreated the host virtual machine’s one but
that was written in Smalltalk. The success in doing so
brought the question of what other parts could also be di-
rectly implemented within the language. Access to the JIT
compiler allowed the usage of underprimitives, which lever-
aged the implementation of the rest of the system. Today,
Bee is far from finished, yet we know all required function-
alities can be implemented. Furthermore, the resulting code
is fully object oriented and can take advantage of all the
benefits that a high-level environment brings.

The main remaining question to be answered is what
is the maximum performance to expect from the system.
We believe that the answer to that question will be highly
positive, and that we will be able to unravel the mystery very
soon.

9. Future work

Being such a big project, many ideas are still left to be
explored. Garbage collection is ready to be plugged to the
system, but requires some modifications to allow running in
the self-hosted bootstrapped system.

Debugging of the self-hosted system is also not possible.
Browsers, inspectors and debuggers are available while in
the hosted system but not in the bootstrapped one. To make
them work we have to implement a messaging system that
wraps the one brought by the hosted environment.

We also plan to support out-of-process debugging and in-
specting. This will allow us to run on resource-limited sys-
tems via remote debugging, even in places where graphical
environments are not be supported.

Current implementation of Bee is more than 10x slower
than the hosted environment, while only implementing small

optimizations. Work on polymorphic inline caches, and the
optimizing compiler will provide a big boost in performance.

Bee has initial support for native multithreading. While
we have not deeply explored the subject, we believe this will
provide bigger performance improvements and also ease
the implementation and exploration of non-blocking and
asynchronous message sending.
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