Voyag by examp\e

tips and tricks on persisting object models

AN\

Esteban Lorenzano

Pharo core developer

INRIA - RMoD
http://smallworks.eu

A\\

http://smallworks.eu

Why?

You already know about Voyage
You already attended to a tutorial last year

But there are some recurrent problems people find
when trying to use it

And I'm still seeing a lot of people that could be
using it and they chose other solutions

\\

What is Voyage” (1)

 Simple abstraction layer to map objects into a database

- Very well suited for document databases, but in theory,
the approach will work for other kind of repositories

» There was (long time ago) a Voyage-GLORP backend

» There was (even more time ago) a Voyage-
ImageSegment backend

- Voyage-Memory, Voyage-Mongo

\\

What is Voyage”? (2)

Did | said is simpleg?
it ensures object identity
it provides error handling

it Implements a connection pool

\\

Voyage principles

* Behavioural complete (for common usage), but
decoupled approach also possible.

* Same design for different backends, but not a
common abstraction

- There Is no such thing as a "voyage query
language”, etc.

- 1S a bit more work for users who want to switch,
but a lot more happiness for the program itselt

A\\ *

Voyage ultimate goal

To be the GLORP for NoSQL databases

A\\ *

Ihe problem to solve

A\\ *

Impedance mistmatch

Class A

Class B

Class C

Table A

Table B

Table C

N

Ideal relational model

\\

Impedance mistmatch

firstObject

[

r\ aColection

anObject

otherObiject

secondObiject

thirdObject

Real object model

AN\ 2

Impedance mistmatch

firstObject

[

r\ aColection

anObject

otherObiject

secondObiject

Real object model

thirdObjeC/

AN\ 2

Impedance mistmatch

f\> aColection >| secondObject

anObject

firstObject

otherObject &hirdObject

N

Real object model

A\\

S0, what about those tips”

A\\

Think in objects

A simple moael

Hero

Power

A\\

Persist

(Hero named: ‘Groot’)
addPower: ((Power named:
level: #epic;
yourself) ;
save.

‘Plant Control’)

A\\ *

Persist

{
_id: OIDC(..),
#version: ..,
#instanceOf: ‘Hero’,
name: ‘Groot’,
powers: [{ #collection: ‘Power’, __id: OID(..) }]

_id: OIDC(..),

#version: ..,

#instanceOf: ‘Power’,

name: ‘Plant Control’,

level: #epic,

heroes: [#collection: ‘Hero’, __id: OID(..)]

A\\ =

lake control

A\\ *

A simple model
(a bit more complete)

Hero < > Power

[

Equipment

(1.* /4 v\
Container Pistol

A\\ *

Persist

(Hero named: ‘Star-lord?’)
addEquipment: (Container
addItem: Pistol new;
yourself) ;
save.

A\\ *

{

Persist (1)

_id: OIDC(..),
#version: ..,
#instanceOf: ‘Hero’,
name: ¢‘Star-lord’,
powers: [],
equipment: [{
#instanceOf: ‘Container’,
‘items’, [
{ #instanceOf: ‘Pistol’ }] }]

A\

{

Persist (2

_id: 0ID(1),
#version: ..,
#instanceOf: ‘Hero’,
name: ‘Star-lord’,

powers:

equipment:

L1,

_id: 0ID(2),
#version: ..,

#instanceOf:

items:

[{ #collection:

_id: 0ID(3),
#version: ..,
#instanceOf: ‘Pistol’,

[{ #collection:

‘Container’,

‘Equipment’,

‘Equipment’, __id: 0ID(2) } 1]

__id: OID(3) } 1

AN\

Integrity Is a
conseqguence

A\\ *

Allowing missing content

* We do not have foreign keys

- S0 we cannot do things like “ON DELETE
CASCADE”

- Even delete validations are difficult

» Imagine "hero” has a "power”,and | remove the
‘power”. How can the hero notice it?

\\

Persist

mongoContainer
<mongoContainer>

A VOMongoContainer new
collectionName: ‘powers’;
enableMissingContent;
yourself

A\\

Querying smart

A\\ *

Query (1)

Hero
selectMany: [:each | ..]
sortBy: { #name -> VOOrder ascending } asDictionary
Llimit: 100
offset: 100

A\\

Query (2)

Hero
selectMany: {
‘name’ -> {
‘Sregexp’ -> ‘AG.x7.,
‘Soptions’ -> ¢4’
} asDictionary
} asDictionary

A\\

Adapt schemes

The “scheme Is not mine”
problem

* You can move meta-information to your program
 Magritte-Voyage gives you a lot of power

* You can extend/modity parts of the updating
system too (like versioning)

A\\ *

{

Meta-information

_id: OIDC(..),
#version: ..,
#instanceOf: ‘Hero’,
name: ¢‘Star-lord’,
powers: [],
equipment: [{
#instanceOf: ‘Container’,
‘items’, [
{ #instanceOf: ‘Pistol’ }] }]

AN\

{

Meta-information

_id: OIDC(..),
#rerston—ay
#iastance0fFt—Hero 5
name: ¢‘Star-lord’,
powers: [],
equipment: [{
H=nstencel=r Contogrer’ —
‘items’, [
{ #instancedft+—Pistolt> }] }]

A\\

{

}

Meta-information

_id: 0ID(..),

name: ¢‘Star-lord’,

powers: [],

equipment: [{
“Atems’, [{} 1 }]

A\\

Voyage 2.0

Root detection (enhance save & update)
Cyclic detection

- Add strategy to persist cycles even without roots (It has some
consequences (in querying, etc.), so it will be optional)

iIntegrity validations

- #removeWithDependencies
Materialisation customisations
- #readRaw

Add backend: Riak

AN\ 2

Use It today!

Gofer 1t
smalltalkhubUser:
configurationOf:

loadStable.

‘Pharo’ project: ’MetaRepoForPharo30’;
‘VoyageMongo’ ;

Thanks!

Esteban Lorenzano - 2014

\\

