
Spur
Confused images
 and mixed metaphors
 for Squeak Pharo
 and Newspeak

eliot@cadence.com

Wednesday, 20 August 2014

Three Parts

VM Evolution

Lazy Forwarding/
Partial Read Barrier

Spur Memory Manager
Wednesday, 20 August 2014

Spur isA: MemoryManager new

faster

more powerful

64-bit ready

Wednesday, 20 August 2014

Spur isAn: Evolution

Dorado Berkeley

SqueakPS

HPS

BrouHaHa

HPS 5

Stack

Cog v1

Spur64-bit HPS 7

Smalltalk/V

BrouHaHa-TC

Cog v2

Sista

Wednesday, 20 August 2014

inherited traits

Dorado Berkeley

Squeak V1PS

HPS

BrouHaHa

HPS 5

Stack

Cog v1

Spur64-bit HPS 7

Smalltalk/V

BrouHaHa-TC

contexts

ephemerons

stack-to-register
mapping JIT

direct pointers

class table

Simulator and
Slang brothers

context-to-
stack mapping

method
cache

object table
indirection

in-line
cache JIT

Cog v2

weakness object-oriented

64-bits

Wednesday, 20 August 2014

object-oriented?? Object
Memory

NewObject
Memory

Stack
Interpreter

CoInterpreter SpurMemory
Manager

Spur32Bit
MemMgr

SpurGeneration
Scavenger

SpurSegment
Manager

Cogit

SimpleStack
BasedCogit

StackToRegister
MappingCogit

Spur64Bit
MemMgr

CogObject
Representation

CogObjRepFor
SqueakV3

CogObjRepFor
Spur

CogObjRepFor
32BitSpur

CogObjRepFor
64BitSpur

VMStruct
Type

teleology

Wednesday, 20 August 2014

oops

size...flags...hash
class

inst vars
...

BS Direct Pointers

inst vars

size...flags...hash
class

indirection

HPS Object Table Indirection

inst vars
...

D-machine OTE

20-bit address
refcount size

class
inst vars

...

Wednesday, 20 August 2014

oops!
yeah, right...

size...flags...hash
class

indirection
inst vars

...

size...flags...inst size...hash...class index
indirection
inst vars

...

64-bit HPS 7
sparse
class
table

Wednesday, 20 August 2014

class indices/class tags

class index is index of class in class table
class’s identity hash is its index in class table
∴ its instances’ class tag
Behavior>>identityHash (& Behavior>>new)
use them in method caches; resolve to class
object on #class or full method lookup
constants, never moved by GC
cheap allocation of well-known objects
puns & special non-objects

#slots identityHash fmt class index

Wednesday, 20 August 2014

evolution

top-down selection pressure
(≈tests)

bottom-up refinement
(≈≈ pink plane)
exaptation
(≈ blue plane)

Wednesday, 20 August 2014

Aquatic Ape Hypothesis
Wednesday, 20 August 2014

The VM System

heap

 lookup
cache interp

reter prims gc &
alloc

Wednesday, 20 August 2014

The VM System

heap

 lookup
cache code

zone stack
zone

 interp
reter jit prims gc &

alloc

Wednesday, 20 August 2014

method lookup
findNewMethod
! "Find the compiled method to be run when the current

 messageSelector is sent to the class lkupClass, setting
 the values of newMethod and primitiveIndex."

! <inline: true>
! | ok |
! ok := self lookupInMethodCacheSel: messageSelector class: lkupClass.
! ok ifFalse: "entry was not found in the cache; look it up the hard way"
! ! [self lookupMethodInClass: lkupClass.
! ! self addNewMethodToCache]

Wednesday, 20 August 2014

Exapt

 method cache probe

 class tags

 stack zone

 primitives
Wednesday, 20 August 2014

Exaptation

become lazy

 all objects can be forwarders

forwarded class tag fails method cache probe

follow on message lookup

stack zone scan avoids inst var access read barrier
Wednesday, 20 August 2014

become
size flags hash class index

inst var 0 inst var 1
.....

size flags hash class index
inst var 0 inst var 1

.....

Wednesday, 20 August 2014

become
 size flags forwarded index
forwarding ptr

size flags hash class index
inst var 0 inst var 1

.....

size flags hash class index
inst var 0 inst var 1

.....

 size flags forwarded index
forwarding ptr

copy copy

Wednesday, 20 August 2014

follow
followForwarded: objOop
! | referent |
! referent := self fetchPointer: 0 ofMaybeForwardedObject: objOop.
! [(self isOopForwarded: referent)] whileTrue:
! ! [referent := self fetchPointer: 0 ofMaybeForwardedObject: referent].
! ^referent

followField: fieldIndex ofObject: anObject
! | objOop |
! objOop := self fetchPointer: fieldIndex ofObject: anObject.
! (self isOopForwarded: objOop) ifTrue:
! ! [objOop := self followForwarded: objOop.

self storePointer: fieldIndex ofObject: anObject withValue: objOop].
! ^objOop

ObjectMemory>>followField: fieldIndex ofObject: anObject
! ^self fetchPointer: fieldIndex ofObject: anObject

Wednesday, 20 August 2014

lazy forwarding issues

inst var access
(& method access in interpreter)
message sends
class hierarchy method lookup
global var access (including super sends)
primitives

Wednesday, 20 August 2014

lazy forwarding: inst vars
partial read barrier

size flags forwarded index
forwarding ptr

size flags hash class index
inst var 0 inst var 1

.....

size flags hash class index
inst var 0 inst var 1

.....

size flags forwarded index
forwarding ptr

copy copy

+ if became pointer or method object,
scan stack zone to follow forwarding pointers

Wednesday, 20 August 2014

lazy forwarding: sends
findNewMethod
! (self lookupInMethodCacheSel: selector classTag: lkupClassTag) ifFalse:
! ! [((heap isOopForwarded: selector)
! ! or: [heap isForwardedClassTag: lkupClassTag]) ifTrue:
! ! ! [(heap isOopForwarded: selector) ifTrue:
! ! ! ! [selector := self handleForwardedSelectorFault: selector].
! ! ! (heap isForwardedClassTag: lkupClassTag) ifTrue:
! ! ! ! [lkupClassTag := self handleForwardedTagFault: lkupClassTag].
! ! ! (self lookupInMethodCacheSel: selector classTag: lkupClassTag)
! ! ! ! ifTrue: [^self]].
! ! lkupClass := heap classForClassTag: lkupClassTag.
! ! self lookupMethodInClass: lkupClass.
! ! self addNewMethodToCache: lkupClass]

Wednesday, 20 August 2014

lazy forwarding:
class hierarchy method lookup

after any pointer become could scan
every class in class table
every method on entry to stack zone
KISS
read barrier on access

superclassOf: classObj
! "Read barrier here costs very little because lookup is rare,

 & class and superclass almost certainly share a cache line."
 ^objectMemory followField: SuperclassIndex ofObject: classObj

Wednesday, 20 August 2014

lazy forwarding:
global variable access
after any pointer or method become could scan
every method in stack & code zones
every method on entry to stack zone
KISS
read barrier on access

pushLiteralVariable: literalIndex
! | litVar |
! litVar := self literal: literalIndex.
! (heap isForwarded: litVar) ifTrue:
! ! [litVar := heap followForwarded: litVar].
! self push: (heap fetchPointer: ValueIndex ofObject: litVar)

Wednesday, 20 August 2014

lazy forwarding: primitives
bits

width
height

offset
mask

depth

bits
width
height

offset
depth

x
y

x
y

self validate
ifTrue: [self operate]
ifFalse: [self fail]

Wednesday, 20 August 2014

primitives
self validate

ifTrue: [self operate]
ifFalse: [self fail]slowPrimitiveResponse

! primFailCode := 0.
! self perform: primitiveFunctionPointer.
! self successful ifFalse:
! [self checkForAndFollowForwardedPrimitiveState ifTrue:
! ! [primFailCode := 0.
! ! self perform: primitiveFunctionPointer]]

checkForAndFollowForwardedPrimitiveState
| depth |

! depth := primitiveAccessorDepths at:
(self primitveIndexOf: newMethod).

^accessorDepth >= 0
 and: [self followStackedArgumentsToDepth: accessorDepth]

Wednesday, 20 August 2014

Spur Memory Manager

ephemerons
object representation & heap walking
pig compaction
pinning, bridges and segments
debugging

Spur
Memory
Manager

Spur
Generation
Scavenger

Spur
Segment
Manager

Wednesday, 20 August 2014

ephemerons

processEphemerons
! "There are ephemerons to be scavenged. Scavenge them and fire any whose keys are
! still in pastSpace and/or eden. The unscavenged ephemerons in this cycle can only be
! fired if all the unscavenged ephemerons in this cycle are firable, because references
! to ephemeron keys from unfired ephemerons should prevent the ephemerons with
! those keys from firing. So scavenge ephemerons with surviving keys, and only if none
! are found, fire ephemerons with unreferenced keys, and scavenge them. Read the
! class comment for a more in-depth description of the algorithm."

! | unfiredEphemeronsScavenged |
! unfiredEphemeronsScavenged := self scavengeUnfiredEphemeronsInRememberedSet.
! self scavengeUnfiredEphemeronsOnEphemeronList ifTrue:
! ! [unfiredEphemeronsScavenged := true].
! unfiredEphemeronsScavenged ifFalse:
! ! [self fireEphemeronsInRememberedSet.
! ! self fireEphemeronsOnEphemeronList]

Wednesday, 20 August 2014

object size/heap walk

<= 254 identityHash fmt class index
at least one slot

 255 identityHash fmt class index
 255 slot count

8 22 5 22

Wednesday, 20 August 2014

pig compaction

if you have a hammer...

Wednesday, 20 August 2014

another two finger
at least one slot

=> use the xor trick

free
space

free
space

free
space

Wednesday, 20 August 2014

pins, segments and bridges

 255 1 bits bridge
 255 span

first segment

isPinned

Wednesday, 20 August 2014

achieving inner peace
A garbage collector is a
destructive graph rewriter

when it goes wrong...

Wednesday, 20 August 2014

kill more lemmings

Wednesday, 20 August 2014

performance

functionality

availability
www.mirandabanda.org

64-bits

status
-35% = 1/(1-0.35)
= 1/0.65 = 1.54x

-50% = 2x

-40% = 1/0.6 = 1.6
.

(new-old)/old

Wednesday, 20 August 2014

