

Presenty

User Interface Application Framework

http://www.squeaksource.com/Presenty MIT license

Presenty

Separation business logic of user interface application

from presentation level

Business logic of user interface application

● Select savings account

● Select pay service

● Input pay service requisities

● Input payment amount

● Wait payment processed

● Take cheque

Sequence of domain user requests:

Business logic of user interface application

Sequence of primitive user requests:

● Select item from list

● Edit item

● Wait something

● Look at item

Presentation level

● Combo box

● Check box

● Radio button

● Context menu

● Button

● Shortcuts

● Table

● List

● Tree

Widgets:

Presentation level

● Combo box

● Check box

● Radio button

● Context menu

● Button

● Shortcut

● Table

● List

● Tree

It's all designer terminology

Classic package browser

Alt Browser

Classic browser, Alt-browser, Whisker browser, Newspeak browser

● Select package

● Select class from selected package

● Select protocol from selected class

● Select method from selected protocol

Same business logic

Classic browser, Alt-browser, Whisker browser, Newspeak browser

● Select package

● Select class from selected package

● Select protocol from selected class

● Select method from selected protocol

Same business logic

Can be presented by million ways,

by million widgets

at application programming level

● Combo box

● Check box

● Radio button

● Context menu

● Button

● Shortcut

● Table

● List

● Tree

No widgets!

Simple package browser with Presenty

PtyBrowsePackagesTask>>body

| package class method protocol |

package := user select: 'Package' from: PackageOrganizer default packages.

class := user select: 'Class' from: package classes.

protocol := user select: 'Protocol' from: class protocols.

method := user select: 'Method' from: (class methodsInProtocol: protocol).

user lookAt: method sourceCodePreviewPresenter

Browser with simple navigation

Browser with simple navigation and filtered lists

List filters

Browser with table

Browser with table and filters

List filters

Modal browser with filters and items paging

Kernel selected

Float selected

Arithmetic selected

Browser with tree

Not yet implemented

How all this work
● PtyGuide is central object which drive all application

● PtyUser presents domain user of application. It implements
domain specific requests

● user payForService
● user selectSavingsAccount
● …

● User interacts with guide to call new tasks

● Task describes business logic as sequence of user requests

● Task can call other tasks

● Task can add UI items (presenters) to view area

● UI items are presenters which connect model to view

● Task can inherit UI items from other tasks

How all this work

PtyViewAreaPresenter

● context

● items

PtyTask

● user

● guide

● activationStrategy (default)

● parentContext

● prototype

PtyTaskActivationStrategy

● context

● parentViewArea

● shouldRememberTask

● shouldForgetCompleteTask

● shouldRestoreParentArea

PtyTaskContext

● task

● continuation

● activation

parentContext

task

activation context

parentViewArea

context

How all this work

PtyTaskActivationStrategy

SeparatedAreaActivationStrategy InheritedActivationStrategy

PtyViewAreaActivator

PtyInlinedAreaActivator

PtyPopUpAreaActivator

PtyEmbeddedAreaActivator

PtyNewAreaActivator

PtyNewWindowActivator

PtyModalAreaActivator

areaActivator

show view area to user

Tree UI element

package := user select: 'Package' from: PackageOrganizer default packages.

class := user select: 'Class' from: package classes.

● Class selection task configured to be activated on separated
view area near selected package item

● With same way any task which executed by button can show
its items near this button

● Not implemented yet

Combo box UI element

guide addTask: [model value: (user select: 'Item' from: possibleItems)].

user lookAt: model preferredPreviewPresenter

● #lookAt: shows user current value of model

● #addTask: adds extra task to view area

● #addTask: can be configured as button which executes
extra task

● Extra task with items selection can be configured to show
popup view area with items list

PtyForkTask

● PtyForkTask is one way to add extra task to view area

● PtyForkTask just executed target task and when user request
happen parent task continue execution

● There are many ways to share «fork task items» with parent
task

● Add all items to parent view area
● Put all items on separated panel
● Put first request items on one panel but next on other
● ...

What about buttons?

● Presenty has no ButtonPresenter or ButtonView (Morph)

● Button is just specific way to execute some action. It's same
as:

● Shortcuts
● Voice command
● Gesture
● Million other ways

User actions

PtyPresenter

PtyUserActionConnector

PtyButtonUserActionActivator

PtyMouseClickUserActionActivator

PtyShortcutActionActivator
Implements #hookupPresenter

PtyUserAction

connector

PtyUserActionActivator

*

userActions

action

activators

presenter

*

User actions

Any list item has user action which
executes

PtyReturnValueFromPresenterTask

User action PtyReturnToPreviousTask

How all this configured
● Presenter views can be different for different contexs

● Requested tasks can be different for different contexts

● Action activators can be different for different contexts

Extendible UI contexts

● Task context

● Presenter context

● Presenter style context

● List items name context

● Any domain specific contexts
● Big payment context

● Little account balance context

UISettings and PtyPrototypesManager

● Each configured object has prototype

● Prototype can create new instances by copy its sample

● PtyPrototypesManager contains collections of prototypes

● Manager know how to find appropriate prototype
● manager prototypeFor: someContextObject

● special lookup logic which can be extended by domain specific contexts

● Separated managers for presenters, tasks and user actions

● UISettings contains all managers

● UISettings know how to prepare new instances created from
prototype

● PrototypesManager is separated package. It is not depends
on Presenty. It is MIT

Future work

● Extendible object editor

● user edit: object
● Extendible object explorer

● user lookAt: object
● User actions with parameters. Drag and drop activators

● Text editor based on presenter and user actions

● More forking task strategies

● More view area activators

● Improvements for basic stuff like tables

● Docs

● ...

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

