
Profiler Zoo
Alexandre Bergel

abergel@dcc.uchile.cl
Pleiad lab, UChile, Chile

2

Test coverage

 Problem:

 Traditional code coverage tools have a binary view of the world

 Why the problem is important:

 Which method should you test first in order to increase the
coverage?

 Is my code well covered or not?

 Solution:

 An intuitive visual representation of a qualitative assessment of the
coverage

3

Test blueprint

cd

calling methods

complexity # executions

Legend for methods (inner boxes)

red = not executed
blue = abstract

invocation on self

C1

C2

4

Successive improvement

Version 2.2
27.27%

Version 2.3
54.54%

Version 2.4
87.71%

Version 2.5
100%

5

4 patterns

6

Moose-Test-Core.13
Moose-Core.313

Moose-Test-Core.48
Moose-Core.326

21.42%

56.86%

73.58%

68.25%

0%

36.78%

100%

96.66%

64.55%

100%

100%

100%

7

Reducing code complexity

Version 1.58.1
Coverage: 40.57%

Version 1.58.9
Coverage: 60.60%

8

Reducing code complexity

Version 2.10

Version 2.17
9

Execution profiling

 Problem:

 Traditional code profilers are driven by the method stack,
discarding the notion of sending messages

 Why the problem is important:

 How to answer to “Is there a slow function that is called too
often?”

 Solution:

 An intuitive visual representation of the execution that visually
compare the time spent and the number of executions

10

Structural profiling blueprint

legend for methods

(color)

#different

receiver

executions

execution

time

11

Structural profiling blueprint

legend for methods

(color)

#different

receiver

executions

execution

time

bounds

12

Behavioral profiling blueprint

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2

m1
invokes

m2 and m3

m1 m3

13

Behavioral profiling blueprint

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2

m1
invokes

m2 and m3

m1 m3

bounds
14

Code of the bounds method

MOGraphElement>>bounds
 "Answer the bounds of the receiver."

 | basicBounds |

 self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

 basicBounds := shape computeBoundsFor: self.
 self shapeBoundsAt: self shape put: basicBounds.

 ^ basicBounds

15

Memoizing

MOGraphElement>>bounds
 "Answer the bounds of the receiver."

 | basicBounds |
 boundsCache ifNotNil: [^ boundsCache].
 self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

 basicBounds := shape computeBoundsFor: self.
 self shapeBoundsAt: self shape put: basicBounds.

 ^ boundsCache := basicBounds

16

A

B

C

Upgrading
MOGraphElement>>bounds

17

A

B

C

Upgrading
MOGraphElement>>bounds

43%
speedup

18

B

A

Upgrading
MOGraphElement>>bounds

19

A
B C D

cached

absoluteBounds
make display:on:

call absoluteBounds
instead of absoluteBoundsFor:

A'

C'

B'

C'

20

Measuring execution time

 Problem:

 Traditional code profilers sample program execution at a regular
interval. This is inaccurate, non portable and non deterministic

 Why the problem is important:

 all profiles are meaningless if I get a new laptop or change the
virtual machine

 cannot profile short execution time

 Solution:

 counting messages as a proxy for execution time

21

Counting messages

Wallet >> increaseByOne
 money := money + 1

Wallet >> increaseBy3
 self
 increaseByOne;
 increaseByOne;
 increaseByOne.

aWallet increaseBy3
=> 6 messages sent

22

Execution time and number of
message sends

23

0

100000000

200000000

300000000

400000000

0 10000 20000 30000 40000

times (ms)

m
es

sa
ge

 s
en

ds

100 x 10
6

200 x 10
6

300 x 10
6

400 x 10
6

Counting Messages to Identify
Execution Bottlenecks

24

0

2500000

5000000

7500000

10000000

0 75 150 225 300
time (ms)

nu
m

be
r o

f m
et

ho
d

in
vo

ca
tio

ns

2.5 x 10
6

5.0 x 10
6

7.5 x 10
6

10.0 x 10
6

Contrasting Execution Sampling with
Message Counting

 No need for sampling

 Independent from the execution environment

 Stable measurements

25

Counting messages in unit testing

CollectionTest>>testInsertion
 self
 assert: [Set new add: 1]
 fasterThan: [Set new add: 1; add: 2]

26

Counting messages in unit testing

MondrianSpeedTest>> testLayout2
 | view1 view2 |
 view1 := MOViewRenderer new.
 view1 nodes: (Collection allSubclasses).
 view1 edgesFrom: #superclass.
 view1 treeLayout.

 view2 := MOViewRenderer new.
 view2 nodes: (Collection withAllSubclasses).
 view2 edgesFrom: #superclass.
 view2 treeLayout.

 self
 assertIs: [view1 root applyLayout]
 fasterThan: [view2 root applyLayout]

27

Assessing profiler stability

28

Identifying redundant computation

 Problem:

 Traditional code profiler cannot determine whether the same
computation is realized twice or more

 Why the problem is important:

 Redundant computation cannot be identified and removed without
heavily involving programmer imagination

 Solution:

 Finding side-effect-free methods that are executed more than
once

29

Example

MOGraphElement>> absoluteBounds
 ^ self shape absoluteBoundsFor: self

MOGraphElement>> absoluteBounds
 boundsCache ifNotNil: [^ boundsCache].
 ^ boundsCache := self shape absoluteBoundsFor: self

MONode>> translateBy: realStep
 boundsCache := nil.
 ...

30

Example

AbstractNautilusUI>>packageIconFor: aPackage
 |t|
 (packageIconCache notNil
 and: [packageIconCache includesKey: aPackage])
 ifTrue: [ˆ packageIconCache at: aPackage].

 packageIconCache
 ifNil: [packageIconCache := IdentityDictionary
new].

 aPackage isDirty ifTrue: [ˆ IconicButton new].
 t := self iconClass iconNamed: #packageIcon.

 packageIconCache at: aPackage put: t.
 ˆt

31

Identifying memoization candidate

 A method is candidate for being memoized if

 it is executed more than once on a particular object

 it returns the same value per receiver and arguments

 it does not any “perceptible” side effect

 its execution is sufficiently long

32

Experiment

 We took 11 applications and profiled their unit tests

 We identified candidates for each of them

 We memoized some of the candidates

 The tests are kept green

33

34

Execution time

 In some case we reduce the execution time by 20%

 e.g., Nautilus

 In some other case, the execution time increased (!)

 This is the case for very short methods

35

Research questions

 Is there a general way to identify redundant messages
by monitoring program execution?

 Can redundant messages be removed while
preserving the overall program behavior?

36

The Spy profiling framework

spyClassForClass
packageName
classes

PackageSpy spyClassForMethod
package
superclass
metaclass
methods

ClassSpy

afterRun:with: in:
beforeRun:with:in:
run:with:in:

methodName
class
originalMethod
outgoingCalls
incomingCalls
timeExecution

MethodSpy

profile: aBlock
runTests: tests
spyClassForPackage
allMethods
registryName

packages
currentTest

Profiler

Core

TCMethod

beforeRun:with:in:
numberOfDifferentReceivers
nbOfExecutions
isCovered
initialize
viewBasicOn:

numberOfExectutions
receiverTablespyClassForPackage

view
ratioExecutedMethods
ratioCoveredClasses
viewBasicOn:
registryName

TestCoverage

TestCoverage

spyClassForClass
TCPackage

spyClassForMethod
TCClass

37

Closing words

 Little innovation in the tools we commonly use

 Profilers & debuggers have not significantly evolves

 Fantastic opportunities for improvement

38

Thanks to

 Laurent Laffont, RMoD inria group

 all the people who participated in our experiments

39

Moose-Test-Core.13
Moose-Core.313

Moose-Test-Core.48
Moose-Core.326

21.42%

56.86%

73.58%

68.25%

0%

36.78%

100%

96.66%

64.55%

100%

100%

100%

Profiler Zoo

Test coverage with Hapao
Profiling blueprints
Proxy for execution time
Identifying redundant computation

http://bergel.eu
http://hapao.dcc.uchile.cl
http://moosetechnology.org/tools/spy

40

