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Test coverage

 Problem:

 Traditional code coverage tools have a binary view of the world

 Why the problem is important:

 Which method should you test first in order to increase the 
coverage?

 Is my code well covered or not?

 Solution:

 An intuitive visual representation of a qualitative assessment of the 
coverage
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Test blueprint
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Successive improvement
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4 patterns
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Reducing code complexity

Version 1.58.1
Coverage: 40.57%

Version 1.58.9
Coverage: 60.60%
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Reducing code complexity

Version 2.10

Version 2.17
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Execution profiling

 Problem:

 Traditional code profilers are driven by the method stack, 
discarding the notion of sending messages

 Why the problem is important:

 How to answer to “Is there a slow function that is called too 
often?”

 Solution:

 An intuitive visual representation of the execution that visually 
compare the time spent and the number of executions

10



Structural profiling blueprint
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Behavioral profiling blueprint
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Code of the bounds method

MOGraphElement>>bounds
  "Answer the bounds of the receiver."

  | basicBounds |

  self shapeBoundsAt: self shape ifPresent: [ :b | ^ b ].

  basicBounds := shape computeBoundsFor: self.
  self shapeBoundsAt: self shape put: basicBounds.

  ^ basicBounds
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Memoizing

MOGraphElement>>bounds
  "Answer the bounds of the receiver."

  | basicBounds |
  boundsCache ifNotNil: [ ^ boundsCache ].
  self shapeBoundsAt: self shape ifPresent: [ :b | ^ b ].

  basicBounds := shape computeBoundsFor: self.
  self shapeBoundsAt: self shape put: basicBounds.

  ^ boundsCache := basicBounds
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Measuring execution time

 Problem:

 Traditional code profilers sample program execution at a regular 
interval. This is inaccurate, non portable and non deterministic

 Why the problem is important:

 all profiles are meaningless if I get a new laptop or change the 
virtual machine

 cannot profile short execution time

 Solution:

 counting messages as a proxy for execution time
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Counting messages

Wallet >> increaseByOne
 money := money + 1

Wallet >> increaseBy3
 self 
 increaseByOne; 
 increaseByOne;
 increaseByOne.

aWallet increaseBy3
=> 6 messages sent
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Execution time and number of 
message sends
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Counting Messages to Identify 
Execution Bottlenecks
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Contrasting Execution Sampling with 
Message Counting

 No need for sampling

 Independent from the execution environment 

 Stable measurements
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Counting messages in unit testing

CollectionTest>>testInsertion
 self 
 assert: [ Set new add: 1 ]
 fasterThan: [Set new add: 1; add: 2 ]
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Counting messages in unit testing

MondrianSpeedTest>> testLayout2 
  | view1 view2 | 
  view1 := MOViewRenderer new. 
  view1 nodes: (Collection allSubclasses). 
  view1 edgesFrom: #superclass.
  view1 treeLayout.

  view2 := MOViewRenderer new. 
  view2 nodes: (Collection withAllSubclasses).   
  view2 edgesFrom: #superclass.   
  view2 treeLayout.

  self 
 assertIs: [ view1 root applyLayout ] 
 fasterThan: [ view2 root applyLayout ]
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Assessing profiler stability

28



Identifying redundant computation

 Problem:

 Traditional code profiler cannot determine whether the same 
computation is realized twice or more

 Why the problem is important:

 Redundant computation cannot be identified and removed without 
heavily involving programmer imagination

 Solution:

 Finding side-effect-free methods that are executed more than 
once
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Example

MOGraphElement>> absoluteBounds 
 ^ self shape absoluteBoundsFor: self

MOGraphElement>> absoluteBounds 
 boundsCache ifNotNil: [ ^ boundsCache ]. 
 ^ boundsCache := self shape absoluteBoundsFor: self

MONode>> translateBy: realStep 
 boundsCache := nil. 
 ...
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Example

AbstractNautilusUI>>packageIconFor: aPackage 
 |t|
 (packageIconCache notNil 
 and: [ packageIconCache includesKey: aPackage ]) 
 ifTrue: [ ˆ packageIconCache at: aPackage ].

 packageIconCache 
 ifNil: [ packageIconCache := IdentityDictionary 
new ].

 aPackage isDirty ifTrue: [ ˆ IconicButton new ].
 t := self iconClass iconNamed: #packageIcon.

 packageIconCache at: aPackage put: t.
 ˆt
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Identifying memoization candidate

 A method is candidate for being memoized if

 it is executed more than once on a particular object

 it returns the same value per receiver and arguments

 it does not any “perceptible” side effect

 its execution is sufficiently long
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Experiment

 We took 11 applications and profiled their unit tests

 We identified candidates for each of them

 We memoized some of the candidates

 The tests are kept green
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Execution time

 In some case we reduce the execution time by 20%

 e.g., Nautilus

 In some other case, the execution time increased (!)

 This is the case for very short methods
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Research questions

 Is there a general way to identify redundant messages 
by monitoring program execution?

 Can redundant messages be removed while 
preserving the overall program behavior?
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The Spy profiling framework
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Closing words

 Little innovation in the tools we commonly use

 Profilers & debuggers have not significantly evolves

 Fantastic opportunities for improvement
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Profiler Zoo

Test coverage with Hapao
Profiling blueprints
Proxy for execution time
Identifying redundant computation

http://bergel.eu
http://hapao.dcc.uchile.cl
http://moosetechnology.org/tools/spy
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