
RMod

1

Mariano Martinez Peck
marianopeck@gmail.com

http://marianopeck.wordpress.com/

Monday, August 22, 2011

mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com

What is a proxy?

2

A proxy object is a surrogate or
placeholder that controls access to

another target object.

Monday, August 22, 2011

Glossary

 Target: object to proxify.

 Client: user of the proxy.

 Interceptor: object that intercepts message
sending.

 Handler: object that performs a desired
action as a consequence of an interception.

3

Monday, August 22, 2011

Forwarder and
Logging example

4

Monday, August 22, 2011

With or without
Object replacement?

 In proxies with object replacement
(#become:), the target object is replaced by a
proxy.

 Proxies without object replacement are a
kind of factory.

5

Monday, August 22, 2011

With or without
Object replacement?

 In proxies with object replacement
(#become:), the target object is replaced by a
proxy.

 Proxies without object replacement are a
kind of factory.

5

Monday, August 22, 2011

Traditional proxy
implementations

6

Usage of a minimal object together with an implementation of a
custom #doesNotUnderstand

doesNotUnderstand:
executeBeforeHandling
executeAfterHandling

target
Proxy

identityHash
pointersTo
nextObject
...

ProtoObject

Monday, August 22, 2011

7

We are going to play
a little game...

Monday, August 22, 2011

8

Are both prints in Transcript the same or not?

Monday, August 22, 2011

8

Are both prints in Transcript the same or not?

Conclusion: methods understood are NOT intercepted.
Is that bad?

Monday, August 22, 2011

8

Are both prints in Transcript the same or not?

Conclusion: methods understood are NOT intercepted.
Is that bad?

Different execution paths Errors difficult to find
Monday, August 22, 2011

9

Do we want the regular #doesNotUnderstand
or to intercept the message?

Monday, August 22, 2011

10

Do we want the regular #doesNotUnderstand
or to intercept the message?

Monday, August 22, 2011

11

I wanted the normal #doesNotUnderstand!!!

Monday, August 22, 2011

12

I wanted the normal #doesNotUnderstand!!!

Monday, August 22, 2011

Problems
 #doesNotUnderstand: cannot be trapped like a
regular message.

 Mix of handling procedure and proxy
interception.

 Only methods that are not understood are
intercepted.

 No separation between proxies and handlers

13

This approach is not stratified

Monday, August 22, 2011

14

Subclassing from nil does not solve
the problem.

Monday, August 22, 2011

15

VM CRASH

This solution is not uniform

Monday, August 22, 2011

16

A Uniform, Light-weight and Stratified Proxy
Model and Implementation.

Monday, August 22, 2011

Used hooks

 Object replacement (#become:)

 Change an object’s class (#adoptInstance:)

 Objects as methods (#run:with:in:)

 Classes with no method dictionary
(#cannotInterpret:)

17

Monday, August 22, 2011

Object replacement

18

A
B

C
D

A
B

C
D

c become: d

Monday, August 22, 2011

Objects as methods

19

The VM sends #run: aSelector with: anArray in: aReceiver

Monday, August 22, 2011

Objects as methods

19

The VM sends #run: aSelector with: anArray in: aReceiver

So.....We can implement in Proxy:

Monday, August 22, 2011

CLasses with no
method dictionary

20

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

Monday, August 22, 2011

Ghost model

21

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

handleInterception: anInterception
ProxyHandler

handleInterception: anInterception
SimpleForwarderHandler

message
proxy
proxyState

Interception

Monday, August 22, 2011

How it works?

22

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

Monday, August 22, 2011

How it works?

22

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

Proxy class >>

Monday, August 22, 2011

How it works?

22

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

aProxy

‘Mariano’aHandler

instanceOf

Proxy class >>

Monday, August 22, 2011

How it works?

22

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

aProxy

‘Mariano’aHandler

instanceOf

Proxy class >>

ProxyTrap class >>

Monday, August 22, 2011

How it works?

22

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

aProxy

‘Mariano’aHandler

instanceOf

Proxy class >>

ProxyTrap class >>

Monday, August 22, 2011

How it works?

22

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

aProxy

‘Mariano’aHandler

instanceOf

Proxy class >>

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Proxy >>

Monday, August 22, 2011

aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil,
the VM sends #cannotInterpret to

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass

How it works?

23

Proxy >>

SimpleForwarderHandler >>

Monday, August 22, 2011

24

Traditional Ghost

#doesNotUnderstand:
cannot be trapped like a
regular message.

#cannotInterpret: is
trapped like a regular
message.

Mix of handling
procedure and proxy
interception.

No mix of handling
procedure and proxy
interception.

Only methods that are
not understood are
intercepted.

“All” methods are
intercepted.

No separation between
proxies and handlers.

Clear separation between
proxies and handlers.

Monday, August 22, 2011

25

is stratified

Monday, August 22, 2011

Methods not intercepted

26

1) Optimizations done by the Compiler

2) Special shortcut bytecodes between Compiler and VM

2.1) Methods NEVER sent: #== and #class
2.2) Methods that may or may not be executed depending

on the receiver and arguments: e.g. in ‘1+1’ #+ is not
executed. But with ‘1+$C’ #+ is executed.

2.3)Always executed, they are just little optimizations.
Examples #new, #next, #nextPut:, #size, etc.

Monday, August 22, 2011

Methods not intercepted

26

1) Optimizations done by the Compiler

2) Special shortcut bytecodes between Compiler and VM

2.1) Methods NEVER sent: #== and #class
2.2) Methods that may or may not be executed depending

on the receiver and arguments: e.g. in ‘1+1’ #+ is not
executed. But with ‘1+$C’ #+ is executed.

2.3)Always executed, they are just little optimizations.
Examples #new, #next, #nextPut:, #size, etc.

Monday, August 22, 2011

Methods not intercepted

26

1) Optimizations done by the Compiler

2) Special shortcut bytecodes between Compiler and VM

2.1) Methods NEVER sent: #== and #class
2.2) Methods that may or may not be executed depending

on the receiver and arguments: e.g. in ‘1+1’ #+ is not
executed. But with ‘1+$C’ #+ is executed.

2.3)Always executed, they are just little optimizations.
Examples #new, #next, #nextPut:, #size, etc.

Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

logIn:
validate:

username
age

User

Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

logIn:
validate:

username
age

User

Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

logIn:
validate:

username
age

User

Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

logIn:
validate:

username
age

User

Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

aUser
aClassProxy

methodDict = nil
superclass = ClassProxy

logIn:
validate:

username
age

User

instance of

Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

aUser
aClassProxy

methodDict = nil
superclass = ClassProxy

logIn:
validate:

username
age

User

instance of

User name
Monday, August 22, 2011

Proxy for classes

27

cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

aUser
aClassProxy

methodDict = nil
superclass = ClassProxy

logIn:
validate:

username
age

User

instance of

aUser username

User name
Monday, August 22, 2011

Proxy for methods

28

Monday, August 22, 2011

Proxy for methods

28

Regular message

Monday, August 22, 2011

Proxy for methods

28

Regular message
Method execution

Monday, August 22, 2011

Proxy for methods

28

Just handling #run:with:in correctly is enough to also
intercept method execution.

Regular message
Method execution

Monday, August 22, 2011

is

29

Uniform

Monday, August 22, 2011

is

29

moreUniform

Monday, August 22, 2011

More features

 Low memory footprint.

 Compact classes.

 Store the minimal needed state.

 Easy debugging.

 Custom list of messages.

30

Monday, August 22, 2011

Conclusion

31

With a little bit of special support from
the VM (#cannotInterpret hook), we
can have an image-side proxy solution

much better than the classic
#doesNotUnderstand:

Monday, August 22, 2011

Future work

 Experiment with immediate proxies
(memory address tag) in VM side.

 Think how to correctly intercept non-
executed methods.

32

Monday, August 22, 2011

Links

 http://rmod.lille.inria.fr/web/pier/software/
Marea/GhostProxies

 http://www.squeaksource.com/Marea.html

33

Monday, August 22, 2011

http://rmod.lille.inria.fr/web/pier/software/Marea/GhostProxies
http://rmod.lille.inria.fr/web/pier/software/Marea/GhostProxies
http://rmod.lille.inria.fr/web/pier/software/Marea/GhostProxies
http://rmod.lille.inria.fr/web/pier/software/Marea/GhostProxies
http://www.squeaksource.com/Marea.html
http://www.squeaksource.com/Marea.html

Mariano Martinez Peck
marianopeck@gmail.com

http://marianopeck.wordpress.com/

RMod

A Uniform, Light-weight and Stratified Proxy Model and
Implementation

Monday, August 22, 2011

mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com

