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What is a proxy?
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A proxy object is a surrogate or 
placeholder that controls access to 

another target object.
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Glossary

 Target: object to proxify.

 Client: user of the proxy.

 Interceptor: object that intercepts message 
sending. 

 Handler: object that performs a desired 
action as a consequence of an interception.
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Forwarder and 
Logging example
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With or without 
Object replacement?

 In proxies with object replacement 
(#become:), the target object is replaced by a 
proxy.

 Proxies without object replacement are a 
kind of factory.
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Traditional proxy 
implementations
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Usage of a minimal object together with an implementation of a 
custom #doesNotUnderstand

doesNotUnderstand:
executeBeforeHandling
executeAfterHandling

target
Proxy

identityHash
pointersTo
nextObject
...

ProtoObject
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We are going to play 
a little game...
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Are both prints in Transcript the same or not?
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Are both prints in Transcript the same or not?

Conclusion: methods  understood are NOT intercepted.
Is that bad?
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Are both prints in Transcript the same or not?

Conclusion: methods  understood are NOT intercepted.
Is that bad?

Different execution paths Errors difficult to find
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Do we want the regular #doesNotUnderstand 
or to intercept the message?
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I wanted the normal #doesNotUnderstand!!!
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I wanted the normal #doesNotUnderstand!!!
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Problems
 #doesNotUnderstand: cannot be trapped like a 
regular message.

 Mix of handling procedure and proxy 
interception.

 Only methods that are not understood are 
intercepted. 

 No separation between proxies and handlers
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This approach is not stratified
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Subclassing from nil does not solve 
the problem.
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VM CRASH

This solution is not uniform
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A Uniform, Light-weight and Stratified Proxy 
Model and Implementation.
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Used hooks

 Object replacement (#become:)

 Change an object’s class (#adoptInstance:)

 Objects as methods (#run:with:in:)

 Classes with no method dictionary 
(#cannotInterpret:)
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Object replacement
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A
B

C
D

A
B

C
D

c become: d
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Objects as methods
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The VM sends #run: aSelector with: anArray in: aReceiver
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Objects as methods
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The VM sends #run: aSelector with: anArray in: aReceiver

So.....We can implement in Proxy:
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CLasses with no 
method dictionary
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aProxy

aProxy username

1: #username send

methodDict := nil
ProxyTrap

cannotInterpret: aMessage
Proxy

Object

2: #aProxy lookup

3: Since the method dictionary was nil, 
the VM sends #cannotInterpret to 

the receiver but starting the lookup in the superclass

4: #cannotInterpret: lookup

References
instance of
message send
lookup
subclass
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Ghost model
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cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

handleInterception: anInterception
ProxyHandler

handleInterception: anInterception
SimpleForwarderHandler

message
proxy
proxyState

Interception
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How it works?
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cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object
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aProxy

aProxy username
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aProxy
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Proxy >> 

SimpleForwarderHandler >> 
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Traditional Ghost

#doesNotUnderstand: 
cannot be trapped like a 
regular message.

#cannotInterpret: is 
trapped like a regular 
message.

Mix of handling 
procedure and proxy 
interception.

No mix of handling 
procedure and proxy 
interception.

Only methods that are 
not understood are 
intercepted. 

“All” methods are 
intercepted. 

No separation between 
proxies and handlers.

Clear separation between 
proxies and handlers.
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is stratified
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Methods not intercepted
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1) Optimizations done by the Compiler

2) Special shortcut bytecodes between Compiler and VM

2.1) Methods NEVER sent: #== and #class
2.2) Methods that may or may not be executed depending 

on the receiver and arguments: e.g. in ‘1+1’  #+ is not 
executed.  But with ‘1+$C’ #+ is executed.

2.3)Always executed, they are just little optimizations. 
Examples #new, #next, #nextPut:, #size, etc.
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Proxy for classes
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cannotInterpret:
proxyFor:

handler
target

Proxy

initialize
nilMethodDict

ProxyTrap

Object

cannotInterpret:
proxyFor:

superclass 
methodDict
format
handler
target

ClassProxy

initialize
nilMethodDict

ClassProxyTrap

logIn:
validate:

username
age

User
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Regular message
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Proxy for methods
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Regular message
Method execution
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Proxy for methods
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Just handling #run:with:in correctly is enough to also 
intercept method execution.

Regular message
Method execution
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is
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Uniform
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is
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moreUniform
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More features

 Low memory footprint.

 Compact classes.

 Store the minimal needed state.

 Easy debugging.

 Custom list of messages.
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Conclusion
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With a little bit of special support from 
the VM (#cannotInterpret hook), we 
can have an image-side proxy solution 

much better than the classic 
#doesNotUnderstand:

Monday, August 22, 2011



Future work

 Experiment with immediate proxies 
(memory address tag) in VM side.

 Think how to correctly intercept non-
executed methods. 
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Links

 http://rmod.lille.inria.fr/web/pier/software/
Marea/GhostProxies

 http://www.squeaksource.com/Marea.html
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