ActiveContext

Erwann Wernli

Outline

 Why dyn. software update is challenging (5’)

e Qur approach (5')
* Current stage of the research (5')

About safety

e Let’s consider the evolution

Page

Html

Page

Title
Body

About safety

 How can we migrate the state?

 What happens if old running code accesses field
html ?

e What if an execution mixes old and new code?

— aPage : Page
Method Body / header

Method
Methog html
————— Method

L—-——-4 Method

Request V1 Method

Request V2

Trade-offs

practical timely

safe

Trade-offs

Run-time errors

practical timely

Gemstone
POLUS
Boyapati

JVolve HotSwap

Fickley,

Delay update Impose constraints
safe

Trade-offs

practical

timely
Gemstone
ActiveContext
BOyapati
HotSwap
IVolve Fickley,

safe

Our approach

a context is always version-consistent

html := aPage html.
newCtx := NewContext ancesor: oldCtx.
newCtx do: [aPage header ,

aPage body].

Dynamic evolution

Request V1
-l>—<* Method
b
c Method
O . /
1
S 1 __-- Method
@)
Method
|
/l
. ___|
L~

Request V2

Bi-directional
transformation

Shared object
has one
identity but
two states

Solution:

- State transfer

- Safe concurrency
- Reflective
extension

©O© 00 N O O » WN =

e S N = e =
~N OO O W= O

transformFromAncestor: id
| cls html body header |

cls

:= ancestor readClassFor: id.

(cls = Page) ifTrue: [

]

html := ancestor readField: ’html’ for: id.
html isNil ifFalse: [
body:= html regex: ’<body>(.*)</body>’.
header:= html regex: ’<header>(.*)</header>’.
1.
self writeClassFor: id value: Page2.
self writeField: ’body’ for: id value: body.
self writeField: ’header’ for: id value: header.

(¢cls = AnotherClass) ifTrue: [

Strategy

Instantiation

Design

Concurrent

read/write

Garbage Expected
collection overhead

Eager

Lazy

Migrate
objects

Does nothing

Sync on write

Sync on dirty
read

Garbage when High
not used

Force Medium
migration prio
to GC

Conclusion

First-class contexts ensure version consistency
Safe dynamic software update
Working implementation

Future work: enable lazy sync & GC

Design
Contextual first-classclasses ______|impact

yes Different versions are the same object
Nice with inheritance
Class-side variable synchronized

no Different name per context
Not nice with inheritance
Class-side variable not synchronized

Validation

e What about daemon threads?

* Can we evole class hierarchies this way?
(interdependent classes,inheritance)

* |s the run-time overhead acceptable?

(in space & time)

Safety: no type error, no functional inconsistency

Time: quickly, or at least, eventually install the update

Practicality: no extra constraint during development

