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Outline

 Why dyn. software update is challenging (5’)

e Qur approach (5')
* Current stage of the research (5')



About safety

e Let’s consider the evolution

Page

Html

Page

Title
Body




About safety

 How can we migrate the state?

 What happens if old running code accesses field
html ?

e What if an execution mixes old and new code?
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Our approach

a context is always version-consistent

html := aPage html.
newCtx := NewContext ancesor: oldCtx.
newCtx do: [ aPage header ,

aPage body ].



Dynamic evolution
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Bi-directional
transformation

Shared object
has one
identity but
two states

Solution:

- State transfer

- Safe concurrency
- Reflective
extension
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transformFromAncestor: id
| cls html body header |

cls

:= ancestor readClassFor: id.

( cls = Page ) ifTrue: [

]

html := ancestor readField: ’html’ for: id.
html isNil ifFalse: [
body:= html regex: ’<body>(.*)</body>’.
header:= html regex: ’<header>(.*)</header>’.
1.
self writeClassFor: id value: Page2.
self writeField: ’body’ for: id value: body.
self writeField: ’header’ for: id value: header.

( ¢cls = AnotherClass ) ifTrue: [



Strategy

Instantiation

Design
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Conclusion

First-class contexts ensure version consistency
Safe dynamic software update
Working implementation

Future work: enable lazy sync & GC



Design
Contextual first-classclasses ______|impact

yes Different versions are the same object
Nice with inheritance
Class-side variable synchronized

no Different name per context
Not nice with inheritance
Class-side variable not synchronized



Validation

e What about daemon threads?

* Can we evole class hierarchies this way?
(interdependent classes,inheritance)

* |s the run-time overhead acceptable?

(in space & time)



Safety: no type error, no functional inconsistency

Time: quickly, or at least, eventually install the update

Practicality: no extra constraint during development



