
Object graphs
swapping

m a r i a n o m a r t i n e z p e c k
m a r i a n o p e c k @ g m a i l . c o m

RMod

1

Wednesday, September 15, 2010

mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com

The context

2

Wednesday, September 15, 2010

The context

2

Wednesday, September 15, 2010

The context

2

Wednesday, September 15, 2010

The context

2

Wednesday, September 15, 2010

The context

2

Wednesday, September 15, 2010

The context

2

Wednesday, September 15, 2010

Problem

Use more memory than needed.

Make OOP languages unsuitable for memory
limited devices.

Existence of unused but referenced objects.

3

Wednesday, September 15, 2010

The context
In OOP primary memory is represented by an object graph

A B C

D E F G H

Y

K

X

I LJ

Z

4

Wednesday, September 15, 2010

Garbage Collector
Only collects objects that nobody else points to.

A B C

D E F G H

Y

K

X

I LJ

Z

5

Wednesday, September 15, 2010

Garbage Collector
Only collects objects that nobody else points to.

A B C

D E F G H

Y

K

X

I LJ

Z

5

Wednesday, September 15, 2010

Garbage Collector
Only collects objects that nobody else points to.

A B C

D E F G H

Y

K

X

I LJ

Z

5

Wednesday, September 15, 2010

Garbage Collector
Only collects objects that nobody else points to.

A B C

D E F G H

Y

K

X

I LJ

Z

5

Wednesday, September 15, 2010

6

But...what happens with referenced yet unused objects?

A B C

D E F G H

Y

K

X

I LJ

Z

Wednesday, September 15, 2010

Idea

Swap out (not remove) unused objects to
disk.

Automatically load them back when needed.

7

Wednesday, September 15, 2010

Related work

Large object oriented memory (LOOM).

Melt - Supporting memory leaks.

ImageSegments.

8

Wednesday, September 15, 2010

But...no one solves all the problems

9

Wednesday, September 15, 2010

Main challenges

Not to use more memory than the one
released by swapping.

Low overhead penalty.

Group objects in an smart way.

10

Wednesday, September 15, 2010

Key aspects

Mark and trace unused/used objects at
runtime.

The usage of proxies.

Group unused objects (subgraphs).

11

Wednesday, September 15, 2010

Why we need to
group objects?

Because if we replace each object by a proxy,
we release little memory.

We want to replace a whole group by one or a
few proxies.

12

Wednesday, September 15, 2010

Why subgraphs?

Group of objects that are used (or not used)
together.

We need few proxies (for the roots) for
several objects.

13

Wednesday, September 15, 2010

Experiments done

Modify Smalltalk VM to mark and trace
objects usage.

Visualize objects and memory usage.

Take statistics from different scenarios.

14

Wednesday, September 15, 2010

deployed web
application example

4%

96%

Amount of objects

Used Unused

15%

85%

Amount of memory

Used Unused

15

Wednesday, September 15, 2010

Swapping steps and
challenges

1.Identify sets of objects and serialize them.
Problems: cycles, speed, etc.

2.Write the serialized objects into a file.
Problems: file format, encoding, speed, etc.

3. Load the objects from a file. Problems: class
reshape, avoid duplicates, speed, etc.

16

Wednesday, September 15, 2010

Subgraphs

A
(Root)

B
(Root)

C
(Root)

D E F G H

Y

K

X

I LJ

Subgraph to process

Z

Roots Inner Shared External

17

Wednesday, September 15, 2010

More
problems

Should shared objects be
included or not?

GC moves objects.

Pointers update.

Class changes.

Recreate and reinitialize
objects.

Code executed after
loading.

A
(Root)

B
(Root)

C
(Root)

D E F G H

Y

K

X

I LJ

Subgraph to process

Z

Roots Inner Shared External

18

Wednesday, September 15, 2010

ImageSegment

Wednesday, September 15, 2010

ImageSegment basis
Only write/swap roots and inner objects.

Shared objects are NOT swapped.

Keep an array in memory for the shared
objects.

Update object pointers to point to a relative
address inside the arrays (offset).

Roots are replaced by proxies.

Uses GC facilities to detect shared objects.

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’
D

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’
D

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’
D

offset
Serialized objects WordArray

Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’ E’
D

offset
Serialized objects WordArray

Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’ E’
D

offset

offset

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’ E’
D

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’ E’
D

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

Subgraph traverse

A CB

D E F G H

I J K L

A’ B’ C’ E’
F GD J

I’ H’ L’

Serialized objects WordArray
Shared objects Array

Wednesday, September 15, 2010

A CB

D E F G H

I J K L

A’ B’ C’ E’
F GD J

I’ H’ L’

Serialized objects WordArray
Shared objects Array

Offset Memory address

Wednesday, September 15, 2010

A CB

D E F G H

I J K L

A’ B’ C’ E’ F GD JI’ H’ L’

Serialized objects WordArray Shared objects Array

anImageSegment

Wednesday, September 15, 2010

D E F G H

I J K L

A’ B’ C’ E’ F GD JI’ H’ L’

Serialized objects WordArray Shared objects Array

anImageSegment

P1 P3P2

Wednesday, September 15, 2010

D E F G H

I J K L

A’ B’ C’ E’ F GD JI’ H’ L’

Serialized objects WordArray Shared objects Array

anImageSegment

P1 P3P2

Wednesday, September 15, 2010

D F G

J K

A’ B’ C’ E’ F GD JI’ H’ L’

Serialized objects WordArray Shared objects Array

anImageSegment

P1 P3P2

Wednesday, September 15, 2010

CB

D F G

J K

A’ B’ C’ E’ I’ H’ L’

Serialized objects WordArray

F GD J

Shared objects Array

anImageSegment

P1 P3P2
Binary file

Wednesday, September 15, 2010

CB

D F G

J K

F GD J

Shared objects Array

anImageSegment

P1 P3P2
Binary file

A’ B’ C’ E’ I’ H’ L’

Wednesday, September 15, 2010

CB

D F G

J K

F GD J

Shared objects Array

anImageSegment

P1 P3P2
Binary file

A’ B’ C’ E’ I’ H’ L’

NIL

Wednesday, September 15, 2010

ImageSegment
conclusions

Good speed.

Graph traverse is done in VM side.

Good use of GC facilities.

You have to be aware of shared objects.

Bad granularity level.

Implicit needed information in object graphs.

Wednesday, September 15, 2010

Thanks!

Mariano Martinez Peck
marianopeck@gmail.com

Wednesday, September 15, 2010

mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com

