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Problem

Use more memory than needed.

Make OOP languages unsuitable for memory 
limited devices.

Existence of unused but referenced objects.
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The context
In OOP primary memory is represented by an object graph
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Garbage Collector
Only collects objects that nobody else points to.
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But...what happens with referenced yet unused objects?
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Idea

Swap out (not remove) unused objects to 
disk.

Automatically load them back when needed.
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Related work

Large object oriented memory (LOOM).

Melt - Supporting memory leaks.

ImageSegments.
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But...no one solves all the problems
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Main challenges

Not to use more memory than the one 
released by swapping. 

Low overhead penalty.

Group objects in an smart way.
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Key aspects

Mark and trace unused/used objects at 
runtime.

The usage of proxies.

Group unused objects (subgraphs).
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Why we need to 
group objects?

Because if we replace each object by a proxy, 
we release little memory.

We want to replace a whole group by one or a 
few proxies.
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Why subgraphs?

Group of objects that are used (or not used) 
together.

We need few proxies (for the roots) for 
several objects.
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Experiments done

Modify Smalltalk VM to mark and trace 
objects usage. 

Visualize objects and memory usage.

Take statistics from different scenarios.

14

Wednesday, September 15, 2010



deployed web 
application example
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Swapping steps and 
challenges

1.Identify sets of objects and serialize them. 
Problems: cycles, speed, etc.

2.Write the serialized objects into a file. 
Problems: file format, encoding, speed, etc.

3. Load the objects from a file. Problems: class 
reshape, avoid duplicates, speed, etc.
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Subgraphs
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More 
problems

Should shared objects be 
included or not?

GC moves objects.

Pointers update.

Class changes.

Recreate and reinitialize 
objects.

Code executed after 
loading.
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ImageSegment
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ImageSegment basis 
Only write/swap roots and inner objects.

Shared objects are NOT swapped.

Keep an array in memory for the shared 
objects.

Update object pointers to point to a relative 
address inside the arrays (offset).

Roots are replaced by proxies.

Uses GC facilities to detect shared objects.
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Subgraph traverse
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ImageSegment 
conclusions

Good speed.

Graph traverse is done in VM side.

Good use of GC facilities.

You have to be aware of shared objects.

Bad granularity level.

Implicit needed information in object graphs.
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Thanks!

Mariano Martinez Peck
marianopeck@gmail.com
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