OBJECT GRAPHS SWAPPING

MARIANO MARTINEZ PECK

marianopeck@gmail.com

DE RECHERCHE
EN INFORMATIQUE

PROBLEM

- We Use more memory than needed.
- Make OOP languages unsuitable for memory limited devices.
- * Existence of unused but referenced objects.

In OOP primary memory is represented by an object graph

But...what happens with referenced yet unused objects?

IDEA

- Swap out (not remove) unused objects to disk.
- ** Automatically load them back when needed.

RELATED WORK

- ** Large object oriented memory (LOOM).
- Melt Supporting memory leaks.
- **** Image Segments.**

But...no one solves all the problems

MAIN CHALLENGES

- Not to use more memory than the one released by swapping.
- ** Low overhead penalty.
- # Group objects in an smart way.

KEY ASPECTS

- Mark and trace unused/used objects at runtime.
- ** The usage of proxies.
- # Group unused objects (subgraphs).

WHY WE NEED TO GROUP OBJECTS?

- Because if we replace each object by a proxy, we release little memory.
- We want to replace a whole group by one or a few proxies.

WHY SUBGRAPHS?

- Group of objects that are used (or not used) together.
- We need few proxies (for the roots) for several objects.

EXPERIMENTS DONE

- Modify Smalltalk VM to mark and trace objects usage.
- * Visualize objects and memory usage.
- ** Take statistics from different scenarios.

DEPLOYED WEB APPLICATION EXAMPLE

SWAPPING STEPS AND CHALLENGES

- 1.Identify sets of objects and serialize them. Problems: cycles, **speed**, etc.
- 2. Write the serialized objects into a file. Problems: file format, encoding, speed, etc.
- 3. Load the objects from a file. Problems: class reshape, avoid duplicates, **speed**, etc.

SUBGRAPHS

MORE PROBLEMS

- Should shared objects be included or not?
- **GC** moves objects.
- * Pointers update.
- **Class** changes.
- Recreate and reinitialize objects.
- Code executed after loading.

IMAGESEGMENT BASIS

- **Only write/swap roots and inner objects.
- * Shared objects are NOT swapped.
- ** Keep an array in memory for the shared objects.
- WUpdate object pointers to point to a relative address inside the arrays (offset).
- Roots are replaced by proxies.
- WUses GC facilities to detect shared objects.

IMAGESEGMENT CONCLUSIONS

- Good speed.
- Graph traverse is done in VM side.
- Good use of GC facilities.
- X You have to be aware of shared objects.
- X Bad granularity level.
- X Implicit needed information in object graphs.

Thanks!

Mariano Martinez Peck marianopeck@gmail.com

