Visualizing Dynamic Metrics with Profiling Blueprints

Alexandre Bergel, Romain Robbes, Walter Binder
University of Chile
University of
Chile
Lugano

"software profiling is the investigation of a program's behavior using information gathered as the program executes"

- Wikipedia

1.45.25.6

1.4 5.2 5.6 2.3

1.4 5.2 5.6 2.3 0.5

•

1.4 5.2 5.6 2.3 0.5

Understanding why

gprof: flat profile

Flat profile:

Each sample counts as 0.01 seconds.

%	cumulative	self		self	total	
time	seconds	seconds	calls	ms/call	ms/call	name
33.34	0.02	0.02	7208	0.00	0.00	open
16.67	0.03	0.01	244	0.04	0.12	offtime
16.67	0.04	0.01	8	1.25	1.25	memccpy
16.67	0.05	0.01	7	1.43	1.43	write
16.67	0.06	0.01				mcount
0.00	0.06	0.00	236	0.00	0.00	tzset
0.00	0.06	0.00	192	0.00	0.00	tolower
0.00	0.06	0.00	47	0.00	0.00	strlen
0.00	0.06	0.00	45	0.00	0.00	strchr

gprof: call graph (~1984)

	index % ti	me se	elf childr	en called	name <spontaneous></spontaneous>
[1]	100.0	0.00	0.05		start [1]
			0.05	1/1	main [2]
		0.00	0.00	1/2	on exit [28]
		0.00	0.00	1/1	exit [59]
		0.00	0.05	 1/1	 start [1]
[2]	100.0	0.00	0.05	1	main [2]
		0.00	0.05	1/1	report [3]
		0.00	0.05	1/1	 main [2]
[3]	100.0	0.00	0.05	1	report [3]
		0.00	0.03	8/8	timelocal [6]
		0.00	0.01	1/1	print [9]
		0.00	0.01	9/9	fgets [12]
		0.00	0.00	12/34	strncmp <cycle 1=""> [40]</cycle>
		0.00	0.00	8/8	lookup [20]
		0.00	0.00	1/1	fopen [21]
		0.00	0.00	8/8	chewtime [24]
		0.00	0.00	8/16	skipspace [44]
[4]	59 . 8	0.01	0.02	8+472	 <cycle 2="" a="" as="" whole=""> [4]</cycle>
		0.01	0.02	244+260	offtime <cycle 2=""> [7]</cycle>
		0.00	0.00	236+1	tzset <cycle 2=""> [26]</cycle>

YourKit

YourKit

CPU statistics	Name	▼ Time (ms)		Invocation Count
Call tree (all threads together)	⊟- All Threads	24 044	100%	
Call tree (by threads)	😑 🦙 java.awt.EventDispatchThread.run()	23 653	9896	1
Hot spots	Intersection\$Demo.paint(Graphics)	10 735	45%	1 048
Method list		20	0%	51
7.11.11.11.11.11.11.11.11.11.11.11.11.11	🖭 🦙 java.lang.Thread.run()	250	1%	3
	- 🦙 java.lang.ref.Finalizer\$FinalizerThread.run()	90	0%	1
	🦢 🦙 java.lang.ref.Reference\$ReferenceHandler.ru	50	0%	1

JProfiler

JProfiler

JProfiler

Retrospective on profiling

Information conveyed hasn't evolved since gprof

Useful to understand what happened

But is of little help to understand why and how

Roadmap

- 1.Polymetric views
- 2. Profiling Blueprint
- 3.Implementation

Polymetric view can map up to 5 dimensions

Structural blueprint

Structural blueprint

Behavioral blueprint

Behavioral blueprint

Detailed behavioral blueprint

Code of the bounds method

MOGraphElement>>bounds "Answer the bounds of the receiver."

basicBounds

self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

basicBounds := shape computeBoundsFor: self. self shapeBoundsAt: self shape put: basicBounds.

^ basicBounds

Memoizing

MOGraphElement>>bounds "Answer the bounds of the receiver."

| basicBounds | boundsCache ifNotNil: [^ boundsCache]. self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

basicBounds := shape computeBoundsFor: self. self shapeBoundsAt: self shape put: basicBounds.

^ boundsCache := basicBounds

Implementation

We use the following metrics:

execution time for a method (% and ms)

number of executions

number of different object receivers

Dynamic properties

a method performs a side effect

a method is void (i.e., return self in Pharo)

Naive (but effective) implementation

Code to profile is executed twice

using a sampling method to get the execution time

instrumentation to get all the remaining metrics

Use hash values to distinguish between different receiver objects

Built a kind of AOP mechanism for the low level instrumentation

Implementation techniques

Visualizations are generated using a scripting languages

... in Mondrian

Limitation

hash code collisions (problem in Pharo)

need to do execute the code to profile twice (sampling and instrumentation)

Implemented in Pharo

Smalltalk dialect

Dynamically typed language

Conclusion

Effective visualizations

Smooth integration in the programming environment

Implemented in Pharo

Conclusion

A number of bottlenecks were identified

No general rule for pattern identification

Visualizations are effective for identifying potential candidate for optimization

Conclusion

Future work

close integration in the programming environment

dedicated visualization for comparison

additional metrics, e.g., the number of executed bytecodes, memory usage

Visualizing Dynamic Metrics with Profiling Blueprints

www.moosetechnology.org/tools/Spy

Alexandre Bergel, Romain Robbes, Walter Binder

abergel@dcc.uchile.cl