
Visualizing Dynamic
Metrics with Profiling

Blueprints
Alexandre Bergel, Romain Robbes, Walter Binder

 University of Chile University of
 Chile Lugano

“software profiling is the investigation
of a program's behavior using
information gathered as the program
executes”

- Wikipedia

2

3

}

{

}

{

}

{
}

{

}

{

4

}

{

}

{

}

{
}

{

}

{

5

}

{

}

{

}

{
}

{

}

{

1.4

6

}

{

}

{

}

{
}

{

}

{

1.4
5.2

7

}

{

}

{

}

{
}

{

}

{

1.4
5.2
5.6

8

}

{

}

{

}

{
}

{

}

{

1.4
5.2
5.6
2.3

9

}

{

}

{

}

{
}

{

}

{

1.4
5.2
5.6
2.3
0.5
...

10

}

{

}

{

}

{
}

{

}

{

}

{

}

{

}

{

}

{

}

{

1.4
5.2
5.6
2.3
0.5
... Understanding why

gprof: flat profile

 Flat profile:

 Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 33.34 0.02 0.02 7208 0.00 0.00 open

 16.67 0.03 0.01 244 0.04 0.12 offtime

 16.67 0.04 0.01 8 1.25 1.25 memccpy

 16.67 0.05 0.01 7 1.43 1.43 write

 16.67 0.06 0.01 mcount

 0.00 0.06 0.00 236 0.00 0.00 tzset

 0.00 0.06 0.00 192 0.00 0.00 tolower

 0.00 0.06 0.00 47 0.00 0.00 strlen

 0.00 0.06 0.00 45 0.00 0.00 strchr

11

gprof: call graph (~1984)

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 0.05 start [1]
 0.00 0.05 1/1 main [2]
 0.00 0.00 1/2 on_exit [28]
 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]

 0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]
 0.00 0.03 8/8 timelocal [6]
 0.00 0.01 1/1 print [9]
 0.00 0.01 9/9 fgets [12]
 0.00 0.00 12/34 strncmp <cycle 1> [40]
 0.00 0.00 8/8 lookup [20]
 0.00 0.00 1/1 fopen [21]
 0.00 0.00 8/8 chewtime [24]
 0.00 0.00 8/16 skipspace [44]

[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole>! [4]
 0.01 0.02 244+260 offtime <cycle 2> [7]
 0.00 0.00 236+1 tzset <cycle 2> [26]

12

YourKit

13

YourKit

14

JProfiler

15

JProfiler

16

JProfiler

17

Retrospective on profiling

18

 Information conveyed hasn’t evolved since gprof

 Useful to understand what happened

 But is of little help to understand why and how

Roadmap

1.Polymetric views

2.Profiling Blueprint

3.Implementation

19

Polymetric view can map up to 5
dimensions

width property

height
property

color
property

X property

Y
property

20[Lanza 2003]

21

KaiProfiler
 viewProfiling: [
 | view |
! view := MOViewRenderer new.
! view
 nodes: (1 to: 100)
 forEach: [:each |
 view nodes: (1 to: 100)].
! view root applyLayout
!]

Structural blueprint

legend for methods

(color)

#different

receiver

executions

execution

time

22

Structural blueprint

legend for methods

(color)

#different

receiver

executions

execution

time

bounds

23

Behavioral blueprint

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2

m1
invokes

m2 and m3

m1 m3

24

Behavioral blueprint

legend for methods

gray =
return
self

yellow =
constant
on return

value

executions

execution
time

m2

m1
invokes

m2 and m3

m1 m3

bounds
25

Detailed behavioral blueprint

MOGraphElement>>

origin

shapeBoundsAt:ifPresent:
Called by #bounds

Calling #bounds

bounds

computeExtentHavingChildrenFor:

26

Code of the bounds method

MOGraphElement>>bounds
 "Answer the bounds of the receiver."

 | basicBounds |

 self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

 basicBounds := shape computeBoundsFor: self.
 self shapeBoundsAt: self shape put: basicBounds.

 ^ basicBounds

27

Memoizing

MOGraphElement>>bounds
 "Answer the bounds of the receiver."

 | basicBounds |
 boundsCache ifNotNil: [^ boundsCache].
 self shapeBoundsAt: self shape ifPresent: [:b | ^ b].

 basicBounds := shape computeBoundsFor: self.
 self shapeBoundsAt: self shape put: basicBounds.

 ^ boundsCache := basicBounds

28

A

B

C

Upgrading
MOGraphElement>>bounds

29

A

B

C

Upgrading
MOGraphElement>>bounds

43%
speedup

30

B

A

Upgrading
MOGraphElement>>bounds

31

A
B C D

cached

absoluteBounds
make display:on:

call absoluteBounds
instead of absoluteBoundsFor:

A'

C'

B'

C'

32

Implementation

 We use the following metrics:

 execution time for a method (% and ms)

 number of executions

 number of different object receivers

 Dynamic properties

 a method performs a side effect

 a method is void (i.e., return self in Pharo)

33

Naive (but effective) implementation

 Code to profile is executed twice

 using a sampling method to get the execution time

 instrumentation to get all the remaining metrics

 Use hash values to distinguish between different
receiver objects

 Built a kind of AOP mechanism for the low level
instrumentation

34

Implementation techniques

 Visualizations are generated using a scripting
languages

 ... in Mondrian

 Limitation

 hash code collisions (problem in Pharo)

 need to do execute the code to profile twice (sampling and
instrumentation)

35

 Implemented in Pharo

 Smalltalk dialect

 Dynamically typed language

36

Conclusion

 Effective visualizations

 Smooth integration in the programming environment

 Implemented in Pharo

37

Conclusion

 A number of bottlenecks were identified

 No general rule for pattern identification

 Visualizations are effective for identifying potential
candidate for optimization

38

Conclusion

 Future work

 close integration in the programming environment

 dedicated visualization for comparison

 additional metrics, e.g., the number of executed bytecodes,
memory usage

39

A

B

C

Visualizing Dynamic Metrics with Profiling
Blueprints

www.moosetechnology.org/tools/Spy

Alexandre Bergel, Romain Robbes,
Walter Binder

abergel@dcc.uchile.cl

40

