
Store

Alan Knight
Engineering Manager – Cincom Smalltalk





Overview

• Concepts

• Cincom Usage

• Current work
 Tools
 Database back-end
 Loader

• Future plans



Concepts

• Cincom Smalltalk source code control system
 VisualWorks, ObjectStudio, WebVelocity

• Started as alternative to ENVY/Manager

• Relational database back-end

• Central database
 But “replication” allows more distributed usage

• State rather than changes 



Internal Cincom Processes

• Action Request (AR)
 MARS system

• Trunks and branches by naming conventions
 7.7.1 – 132
 7.7.1 – 132 + AR 55555 3

• All code changes in branches, merged onto trunk when 
AR code passes review

• Oracle, SQL Server, Postgresql – with replication



…Cincom Processes

• Store AR Support
 Compare/Load/Merge by AR
 Package-level operation
 Tool support in IDE

• Knows which AR is being worked on
• Automated support for naming convention

 Very minimal and simple…
 …. But very useful

• Shared integration image for base

• “head” scripts



Current Work

• Tools

• Atomic Loading

• Database Back-End

• Garbage Collection

• Constraints and Indexes

• Miscellaneous



Tools

• Major revisions of Store tools (still very much in progress)
 Inevitable disruptions, but hopefully progress

• Problems
 Old browser framework
 Inconsistent
 Poor internals, Poor UI
 Performance

• Browsing with RB

• Code Comparison

• Merge, GC



Loading

• Load via file-in
 Compile failures lead to broken image
 Order dependencies
 DLL/CC
 Do-it-yourself brain surgery

• Atomic Loading
 Temporary namespaces for compiling code
 All code installed at once
 Brain surgery made easy



Atomic Loading Caveats

• Not all brain surgery is easy

• Adding/Changing compilers
 Later code needs to be compiled using earlier code
 Install Early

• Some cases can be recognized (Parser subclasses)
• Package property #installBeforeContinuing

 Package granularity

• Other dependencies possible



Analysis Loader

• Upcoming Work

• Current loader goes strictly in package order

• Instead, look at the entire bundle being loaded
 Sort definitions by required load order

• Makes it much easier to organize code as desired
 Packages as categories versus packages as independently 

loadable entities



Database

• Various schema issues

• Naïve object-relational mapping
 Hard to optimize for schema
 Hard to change schema
 No real model

• Moved to GLORP framework, StoreForGlorp

• Numerous advantages, but tradeoffs
 Space vs Time
 Boundaries of caching



Misc

• Database constraints and indexes
 Help ensure integrity
 Avoid two packages with same version name
 Some queries much faster

• Much better treatment of edge cases with Overrides

• History preserved across package renames

• Consistently use server timestamps

• More automation-friendly



Future Possibilities

• Further tools improvements

• Schema changes

• Optimizations

• Configuration management
 Work with non-loaded components
 Logic for variations
 Level independence

• Many possibilities



Demo



Thank You!



Bonus slides if time permits



Database- Schema

• Significant schema issues
 Performance (Blobs, lack of indexes)
 Semantics

• Methods, class definitions, directly connected to package
• Concept of class extension must be constructed
• Painfully slow

 Excess stuff (e.g. separate metaclass definitions)



Database - Model

• Weak model
 Directly coded to database entities
 Naïve O/R mapping
 No resemblance to Smalltalk meta-objects
 Difficult for tools to work with

• StoreForGlorp
 Much stronger model
 Still somewhat constrained to the database entities
 Much closer to meta-objects


