
agile software development & services

OOSCM	
 	

Object	
 Oriented	
 SCM	

SCM Next Generation

We’d like to declare…

Barcelona
The SCM Conference

Why?

▶  Colin Putney’s Monticello 2
–  “Merging is the most important feature of an SCM”

▶  Veronica Urquillaz-Gomez
–  Torch: Code review before integration

▶  Fernando Olivero
–  Reify the programmer an his “unit of work”

▶  Dale Henrichs and Mariano Martinez Peck
–  Metacello

▶  And at the same time as this talk Alan Knigth
–  Taking about Store

We NEED a BETTER SCM tool

What are we going to talk about

OOSCM

▶  A new SCM concept

▶  WHY?
–  Current tools do not fulfill our goals

–  Current tools have conceptually different approaches to
solve SCM that our idea

–  We want to promote Smalltalk

Motivation 1

▶  I want to know
–  where a change was integrated

–  By who and when

–  On what versions

–  What were the changes made to that code during
integration

–  Provide feedback to the programmer at all levels
(method, class, etc)

Motivation 2

▶  Did all the test run after implementing that
change?
–  The programmer should run all tests before submitting

the change to integration

▶  Does the change provide new tests?

Motivation 3

▶  We don’t want this to be an integration conflict

Object subclass: #Class1
instanceVariableNames: ‘’

Object subclass: #Class1
instanceVariableNames: ‘a’

Object subclass: #Class1
instanceVariableNames: ‘b’

V1

V1.1 V1.2

Integration Conflict!

Motivation 4

▶  I want the decisions I made during the pre-
integration code review to be applied during
integration
–  Reformat the code

–  Do not integrate this method

Motivation 5

Motivation 6

▶  Seaside releases version 3.1 that includes lots of
method renames
–  I want the system to tell me there is a new version

–  I decided Patagonia should work with seaside 3.1!!

•  I can’t because I have to do the rename
myself in Patagonia!
•  Why not applying those renames to

Patagonia automatically?

Motivation 7

▶  How do I know if programmers are doing TDD or
just testing?
–  Writing the test first really

▶  How do I know the system architecture and its
evolution?
–  Maven in Java, but can not see its evolution or internal

architecture, only dependencies.

What can we do
withthecurrenttools?

Traditional SCM

Requirements	
 Tradi/onal	
 SCM	
 (SVN,	
 Git,	
 etc)	

MANAGE	
 CHANGE	
 LIFECYCLE	
 NO	

CHANGE	
 QUALITY	
 NO	

SMART	
 AUTOMATIC	
 INTEGRATION	
 NO	

PRE-­‐INTEGRATION	
 TOOLS	
 NO	

AUTOMATIC	
 REFACTORING	
 INTEGRATION	
 NO	

AUTOMATIC	
 UPGRADE	
 NO	

QUERY	
 THE	
 REPOSITORY	
 NO	
 (there	
 is	
 no	
 model)	

Traditional SCM

▶  Archive oriented: Archive is the minimun
trackeable item
–  Between commit changes are lost! (lost of information)
–  Not easy to track group of changes

▶  No reification of what a module is, what a system
is, etc. Just files and directories

▶  Not easy to model the development process
–  It has to be defined from outside the tool

▶  Good for versioning files, not so for OO
development

▶  Advantages:
–  Simple interface
–  Can work offline

Monticello/Metacello

Requirements	
 Mon/cello/Metacello	

MANAGE	
 CHANGE	
 LIFECYCLE	
 NO	

CHANGE	
 QUALITY	
 NO	

SMART	
 AUTOMATIC	
 INTEGRATION	
 Medium	

PRE-­‐INTEGRATION	
 TOOLS	
 Torch	

AUTOMATIC	
 REFACTORING	
 INTEGRATION	
 NO	

AUTOMATIC	
 UPGRADE	
 NO	

QUERY	
 THE	
 REPOSITORY	
 Yes	
 (But	
 limited	
 to	
 the	
 info	
 it	
 stores)	

Monticello / Metacello

▶  As traditional SCM, only “commits” are saved
–  Between commit changes are lost

▶  Metacello helps to model the system architecture
▶  But it does not help to

–  model the development group
–  Integrate different development lines
–  See the integration history (evolution)

▶  Advantages:
–  Simple
–  Can be use offline
–  Metacello provides tools that allow to use it easily

Store *

Requirements	
 Store	

MANAGE	
 CHANGE	
 LIFECYCLE	
 NO	

CHANGE	
 QUALITY	
 NO	
 (could	
 be	
 added)	

SMART	
 AUTOMATIC	
 INTEGRATION	
 Not	
 sure	

PRE-­‐INTEGRATION	
 TOOLS	
 Medium	

AUTOMATIC	
 REFACTORING	
 INTEGRATION	
 NO	

AUTOMATIC	
 UPGRADE	
 NO	

QUERY	
 THE	
 REPOSITORY	
 Yes	
 (But	
 limited	
 to	
 the	
 info	
 it	
 stores)	

* We do not have experience with Store, so this could be wrong

ENVY

Requirements	
 ENVY	

MANAGE	
 CHANGE	
 LIFECYCLE	
 NO	

CHANGE	
 QUALITY	
 NO	
 (could	
 be	
 added,	
 in	
 fact	
 we	
 did	
 it)	

SMART	
 AUTOMATIC	
 INTEGRATION	
 NO	
 (we	
 did	
 it)	

PRE-­‐INTEGRATION	
 TOOLS	
 Three	
 way	
 Differences	

AUTOMATIC	
 REFACTORING	
 INTEGRATION	
 NO	

AUTOMATIC	
 UPGRADE	
 NO	

QUERY	
 THE	
 REPOSITORY	
 Yes	
 *	

▶  New objects can be added to the repository

ENVY

▶  Trackable items are methods, classes, modules
(application) and systems (configuration maps)

▶  Between commit (versioning) changes are saved
▶  Easy to see method, class and module history
▶  Not so easy to see the system history
▶  Kind of difficult for agile development (unless you

remove security, etc)
▶  No reification of programmers changes
▶  No automatic integration (unless you develop it)

ENVY

▶  Disadvantages:
–  Proprietary
–  Old server technology
–  Complex implementation
–  Only for Smalltalk

▶  The best one we have used so far

OOSCM

Proof of concept

Managechangelifecycle

Managechangelifecycle

Managechangelifecycle

ChangeQuality

ChangeQuality

ChangeQuality

SmartAutomaticIntegration

SmartAutomaticIntegration

SmartAutomaticIntegration

OOSCM

The solution…

OOSCM Goals

▶  SCM oriented to development with Objects
–  Paradigm shift from traditional SCM

▶  Easy to track programmers work
▶  Easy to track system evolution

–  Be able to model system architecture
▶  Automatic Integration

–  Smart
–  Easy to integrate complex changes (i.e. refactorings)

▶  Upgrades
–  Automatic upgrading

▶  Not only for Smalltalk:
–  Planned: Java with Eclipse
–  Open to other languages

Architecture

▶  Client-Server

▶  REST

▶  Multi-repository
▶  Offline support

▶  IDE Client: Plug-In Architecture

▶  WebBrowser support

Details

▶  Technology:
–  Developed with Pharo

–  Production: GLASS

▶  Project:
–  Subsidy of the Argentine Ministry of Technology (USD 38 K)

–  Total time: 13 months (with out refactoring integration)

–  We just started

▶  License:
–  Not sure, open client, close server?

–  Open for Smalltalk, paid for other languages?

–  Based on projects, customers, SaaS?

Suggestions – Help – Support - Ideas

agile software development & services

Thank you!

info@10pines.com
www.10Pines.com

twitter: @10Pines

Hernan Wilkinson
hernan.wilkinson@10pines.com

Jorge Silva
jorge.silva@10pines.com

