Design Principles Behind
PATAGONIA

Hernan Wilkinson

hernan.wilkinson@10pines.com

VA 10 Pi nes agile software development & services

\4

What is Patagonia®?

» A beautiful place...

OCEANG
PACIFIOO

OCEANO
ATLANTIOO

AN 10 Pines

» Conference Registration System
» Sponsored by ESUG

» Developed by 10Pines

» Developed with:

— Pharo
— Seaside 3.0 (using JQuery in some places)

» Production:
— Pharo
— Amazon Cloud

— File based persistence (ReferenceStream... but
GemStone is the best option, no doubt about it ©)

AV#VA 10 Pines

What is Patagonia®?

» User Registration front end

HOME TALKS AWARDS ADMIN LOGOUT

Registration Summary

Attendance Date(s): Monday 13, Tuesday 14, Wednesday 15, Thursday 16 and Friday 17
Payment Status: Payment not registered yet. Amount due: 0.00

| Modify Registration Information || Pay || Generate Invoice |

Submitted talks

Add
Name (D) Uploaded File

Design Principles behind Patagonia No file i Delete Upload presentation
User Change Password

Object Oriented SCM - Beyond files No file i Delete Upload presentation

Total: 2

User

First Name (Required)

Heman

Last Name (Required)

Wilkinson

Email (Required)

hemnan.wilkinson@gmail.com

AR 10 Pines

l Accept H Cancel .

What is Patagonia®?

» Group Registration front end

HOME GROUP MEMBERS ADMIN LOGOUT

Group Manager Short Description

Organization name: 10Pines
Payment Status: No status available. The group has no members

\ Modify Affiliation H Register Attendee H Pay H Generate Invoice]

Attendees

Reaister Attendee Reaister Myself as Attendee
Name (D) Email Has Paid?

Total: 0

AR 10 Pines

What is Patagonia®?

» Administration front end

HOME CONFERENCE REGISTRATION STATISTICS ADMIN LOGOUT

Welcome to the Patagonia System Administration

Conference Configuration

Name
ESUG 2010

Description
International Smalltalk Conference

Dates Attendees

Reaister Attendee with New User Register Attendee with Existing User Reaister Myself as Attendee Export
From

Country Affiliation Checked?
Day Month Year

137 9 v 2010 v
Netherlands Delta Lloyd i Delete

To

Month Year Switzerland Cmsbox & netstylech ——— ify Delete
9 v 2010 v

AR 10 Pines

Some Statistics...

» Programming Errors: 1! (Fixed already)

» Functional gaps: some... we had to adjust as
always

» Tests: 136 (no as many as I would like...)

» Classes: 269 (It includes some not functionality
packages)

» Methods: 2415
» Lines Of Code: 16297

» Average Lines/Method: 6 (including comments...
should be less)

» Todo's: 55 ©

AV#VA 10 Pines

Some info...

» Used at ESUG 2010
» License: MIT
» Code: www.squeaksource.com/Patagonia

» Limitations:
— Supports only paid conferences
— Some functionality is coupled with ESUG
- Invoice
 Payment

— Registration wizard not configurable
— And others...

AV?A 10 Pines

Why “Design Principles Behind...” ?

We will see some design
issues...

Some tips about how to avoid
them...

(sorry Dan for stealing your title...)

AvéA 10 Pines

Some Important design problems we saw...

Abstractions created from a technical
perspective, not from the domain
problem one

— UserDAO
— UserService
— ... and User is just a data structure

Accidental

AR 10 Pines

Some Important design problems we saw...

Objects without clear responsibilities
Schizophrenic objects

— Too many responsibilities
— Representing too many entities

Accidental

AR 10 Pines

Some Important design problems we saw...

Tons of "nil doesNotUnderstand:” (or
NullPointerException in “that great”
language ©)

— Difficult to see when an object “is
complete”

Essential

AV#VA 10 PineS

Some Important design problems we saw...

Constraints not part of the model

— Lots of invalid objects

— Models that “"do not teach” new
programmers

AV#VA 10 Pines

» Write Robust Software

» Write software that is easy to understand and
therefore to maintain

— The model has to provide means for the humans to
understand it easily

— The model has to help you learn it!

— The model has to tell us when we make mistakes as
soon as we make them (immediate feedback)

» Computers to do more and programmers less
— We will not care if it takes more time
— We will prefer human time vs. computer time

AV#VA 10 PineS

How do you know if they are good?

» Based on some years of experience...
— I started writing down these “tips” more that six years ago

— I used them to develop different systems (financial/desktop,
sales/web, patagonia, etc)

» Not sure if they apply to any kind of system
AR 10 Pines

Let’s define software

Computable Model of a Problem Domain

Paradigm

'~\\\ /’ \\ /, \\ ”’,4”
Computable .. sy 7 Problem
Model T Domain

AR 10 Pines

And software development as...

Knowledge acquisition Knowledge representation

A learning process... ©

AR 10 Pines

Software development

Natural Language
e|nformal
e|[ncomplete
eTacit

A difficult
task

Programming
Language
eFormal
eComplete
eExplicit

Diagrams
e|nformal
e|[ncomplete
eExplicit

&% 10 Pines

v

Example — Patagonia Requirement

» We cannot have two conferences with the same
name

» A talk can not be registered twice (they can not
have the same name)
» We use the names as unique identifiers but...
— Comparing them should not be case sensitive
— Blanks don’t matter
— They cannot be empty

» Where do we put that knowledge? Should we
represent that knowledge?

AV#VA 10 Pines

For most people, they are just
Strings

For some solitary people (like me),
they have enough behavior to be
reified. I called them Name

A 10 Pines

Another Example

IV #3%&()#+,—./0123456

789:<=>7=ABXAE®I ' HI P
YKAMNOIIOPZETY cQ :

EWZ[-)L ofydedynt

oxvongporometyy SAMeE concept as
[~EY'S/oofaevacreT (pharo list discussion)
ot >xocdert=x, | —

IRFROIOTNUDDZC

» Symbol 2 uniqueness
— why don’t we name it “UniqueString” for example?

» But SOME symbols are “selectors”
— They answer #isUnary, #isBinary, #precedence, etc

» One class is used to represent two different concepts
— Knowledge representation problem...

AN 10 Pines

Another Example

If we remove #isBinary, #precedence to symbols, are they
still symbols?

“A designer knows he has achieved
perfection not when there is nothing left
to add, but when there is nothing left

to take away”

(Saint Exupery)

I think two classes would be better, UniqueString and
MessageName (not even Selector... remember the axioms)

AR 10 Pines

» I don't want the programmer to think all the
time...

— “here, is it only a symbol or a message name?”
— Is this just a string or an identifier (a name)?
— Is this just a number or an amount of money?

computers do more... and people less...
AR 10 Pines

Tip 1:

Try to have an Isomorphism
between classes and concepts of
the problem domain

Avék 10 Pines

Tip 1: Isomorphism

» One to one mapping between classes and concepts

Abstraction -

Concrete |

- , ~"Problem
¥ . 35 Domain
Implementation
Detail R

AR 10 Pines

Tip 1: [somorphism

» No two classes for one concept (not common)

~"Problem
Domain

AR 10 Pines

Tip 1: [somorphism

» No one class for two concepts

~"Problem
Domain

AV#VA 10 PineS

Examples of one class, many concepts

» Symbol used to represent a day

— #Monday represents the day Monday, so you can as a day (i.e.
Monday) if it is binary ©

» Number to represent a year
— Is the number 2008 a good representation of the year 20087
— What does it mean the factorial of year 2008?
— How do you know if year 2008 is leap or not?
» Number to represent a measure
— Is 10 a good representation for 10 dollars?
» String used to represent names (identifiers)
— “Hernan” will not be the same as "HERNAN” or * HeRnAn "

» Just code...

— Is the code “initialCapital * interestRate * time” a good
representation of the Interest received in an investment?

— Why not having an Interest class?

AV#VA 10 Pines

Tip 1 - Conclusion

I'm not saying “create a class per each role they play in a
context”. Example

— Numerator is not another class, we use integers to represent a
fraction’s numerator, and that integer will play the role of the
fraction’s numerator

Some people say "It is more complex, you will have more
classes”

— Remember Alan Kay?: “everything is about the verbs”
— The number of messages will be the same!

- #isBinary, #isKeyword, #precedence etc. will be in
MessageName but we will not add new messages to it that

were not in Symbol

What we recognize as concept of the problem domain
depends on our analysis capabilities and design experience

AvévA 10 Pines

Tip 1 - Conclusion

» Benefits:
Cohesion

Direct mapping between the model and the problem
domain

Well defined abstractions
Objects with clear responsibilities
Easier to understand

» QUESTION: How do we create objects?

AV?A 10 Pines

Classic way to create objects

» Setters

new

ANaDate
dayNumber: 14

Incomplete
Reachable monthNumber: 11

yearNumber: 2008

AVéA 10 Pines

Classic way to create objects

» Disadvantages:

— The user of the object has the responsibility of
“completing” it

— That responsibility is distributed, error prone, not easy
to maintain

— No easy way to ensure its completeness because
nothing define when everything is set

— There is a time span where the object does not
represent anything!

— Nothing prevents us from changing the object

AV?A 10 Pines

Proposed way to create objects

» The object must represent the entity since time
Zero

Date aDate

dayNumber: 14 monthOfYear: November, 2008

S
v

new
« AaDate

Unreachable initializeDayNumber: 14

monthOfYear: November, 2008

Complete

v

AVéA 10 Pines

Tip 2: Objects must be

complete since their
creation time

AN 10 Pines

Tip 2: Implementation - PatAftendee

One instance creation

contact.edwith: anAttendeeContactInformatl message that will
workingAt: anAttendeeWorkInformati receijve a” the ObjECtS

chossing: anAttendeeConferenceOptions
payingWith: anAttendeePayment
and: anAttendeeAdditionallInformation

”~ self new

1 p 1zeRelatedTo: anUser
contactedWith: anAttendeeContactInformati
workingAt: anAttendeeWorkInformati

chossing: anAttendeeConferenceOptions
payingWith: anAttendeePayment
and: anAttendeeAdditionalInformation

» One initialization message

» initializeXxx pattern & 10 Pines
\ 4

Tip 2: Implementation - PatConference

configuredBy: aConferenceConfiguration

~ self

configuredBy: aConferenceConfiguration
hanagingTimeWith: PatRealTimeTimeSystem usingGregorianCalendar

All instance creation messages send the
“real one”

Y Y U T
configuredBy: aConferenceConfiguration managingTimeWith: aTimeSystem

~ self new
initializeConfiguredBy: aConferenceConfiguration
hanagingTimeWith: aTimeSystem

III

One “real” instance
creation message

AV?A 10 Pines

Tip 2: Advantages

» Objects will always answer no matter “when” the
message is sent (they are “complete”)

» Programmer will not worry about “can I send this
message here/now?” (we are simplifying the
protocol!)

» Easy and consistent implementation
— Only one method does new and send initialize...
— Pattern: named: xxx = initializeNamed: xxx

— Easy to check that nobody but the class sends the
initialization message

AV#VA 10 Pines

Tip 2: To think about...

» An object that is “filled out” later, should be
represented at least by two objects

— We will see an example...

» QUESTION: But, are the objects really “valid”??

AV?A 10 Pines

Valid Objects

» Should the model check that objects
are valid?

» If an object represents an entity of
the problem domain, what does an
“invalid” object represent?

» If we allow invalid objects to exist,

how are the programmers going to
learn “from the model”?

AV#VA 10 PineS

We need “Self Defensive” Objects

» YES, our model should be:
— “self defensive” and

— “auto documented” about validity rules/
constrains

AR 10 Pines

Where should objects be self defensive?

» On the method that creates the object?
— Repeated code - Error prone

» Is the UI responsibility
— that a number has to be > 07
— that a string can not be empty?

» What about the instance creation message itself?

— If one of the class responsibility is to create objects, why
not validate its creation first?

AV?A 10 Pines

Example - PatFee

forAllDaysIs: anAllDaysFee forOneDavls: a0neDavfee

ssertionsRunner
valueWith: (self allDaysFeelsPositiveAssertionFor: anAllDaysFee) =
with: (self oneDayFeelsPositiveAssertionFor: aOneDayFee)

ith: (self allDaysFee: anAllDaysFee isGreatherThanOneDayFeeAssertionFor: aOne

~ self new initializeForAllDaysls: anACllDaysFée toruneDayls: aOneDayFee

allDaysFeelsPositiveAssertionFor: afFee

~ PatPositiveAssertion
for: aFee
failureDescribedBy: 'All days fee should be greater or equal to 0'

hllDaysFee: anAllDaysFee isGreatherThanOneDayFeeAssertionFor: aOneDayFee

~ PatLessThanAssertion
for: aOneDayFee
and: anAllDaysFee
failureDescribedBy: 'The all days fee (<2p>) has to be greather than the one day fee (<lp>)'

(this is just an implementation example... you,could
use other implementation...) s 10Pines

Tip 3: Only Allow Valid

Objects to Exist

v 10 Pines

Tip 3: Advantages

» Only VALID objects!!

» The model tells us when we make mistakes!! -
learning feedback!!

» Easy to use and implement

» Some business rules are reified (we will need
more)
» We can meta-program on them...

— Do you want to document when a fee is valid, just look
at its creation assertions

AV#VA 10 Pines

Tip 3: Conseguences

» If we have only complete and valid objects...
— Do we need to use nil?
— All variables reference to objects that are not nil...

AR 10 Pines

Tip 3: Conseguences

... a world without nil
It's easy if you try...
you may say I'm a dreamer..)

G.. but I'm not the only one

“Null References: The billon dollar
mistake” (Tony Hoare)

http: .infog.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare 1
p://www.infog.com/p / Y & 10 Pines

Tip 4: Do not use nil

v 10 Pines

Problems with nil

» nil is handy, but has so many meanings that
makes it impossible to handle it correctly
— “Is this variable nil because it was not initialized or was

it initialized with nil?”

» nil is not polymorphic with any other object,
therefore:
— It forces us to use “isNil ifTrue:”
— Error prone

AV#VA 10 Pines

Tip 4 - Advice

» Reify what the absence of something represents
(null object pattern kind of)

» Never use the “abstract” word in the class name

ProtoObject --all -- + City
Object accessing + country
PatAddress control flow + ifDefinedDo:ifUndefinedDo:
PatDefinedAddress + linel
PatUndefinedAddress + line2

+ postalCode
+ province
? :I:cjass ;]
---LimplementorsJLinheritanceJLsendersJLversionsJLviewj

Object subclass: #PatAddress
instanceVariableNames: "'
classVariableNames: "'
poolDictionaries: "'
category: 'Patagonia-Model’

Tip 4 — To think about

» Can we have an Image without nil?

» Object superclass - nil

— Why not NoSuperclass ? (no need
with ProtoObject)

» What about NotlInitializedVariable
instead of nil?

» Remember MouseOverHandler? (lots of problems??)

leftMorphs := enteredMorphs := overMorphs := nil

initializeTrackedMorphs

leftMorphs := OrderedCollection new.
overMorphs := WriteStream on: #().
enteredMorphs := WriteStream on: #().

AN 10 Pines

Going back to Tip 3: Consequences

» Can we show assertions description to the user?

— YES!! & Error descriptions are in one place, with the
assertions

— We should show more than one error description at the
same time

— We should show error descriptions in the right place

Yantive System B I

SAY NO MORI

AN 10 Pines

Tip 3: Conseguences in the Ul

| Early Registration Fee

All Days Fee
10

One Day Fee
»-1
One day fee should be greater or equal to 0
Early Registration Fee

All Days Fee
. . [20
Late Registration Fee »
All Days Fee Qne Day Fee
11 ‘ 19

Late Registration Fee
One Day Fee
All Days Fee

13

12

The all days fee (11) has to be greather than the one day fee (12)
The all day early registration fee (20) has to be less than the all date late registration fee (13)

One Day Fee
12

The early one day registration fee (19) should be less than the late one day registration fee (12)

v

Ul Implementation - PatFeeRendererBuilder

createModelHolder

| allDaysFeeModelHolder oneDayFeeModelHolder |
aysFeeModelHolder := PatWebNumberModelHolder withNumberOfDecimals: 2%
<::::;E§anFeeModelHolder := PatWebNumberModelHolder withNumberOfDecimals::gj::::>
~ (PatWebGenericCompositeModelHolderBuilder ‘
for: PatFee
accessors: #(#allDaysFee #oneDayFee)

handling: (Array
with: (PatAssertionFailureToErrorReporterDispatcher +

for: #allDaysFee:isGreatherThanOneDayFeeAssertionFor:
is: oneDayFeeModelHolder)
with: (PatAssertionFailureToErrorReporterDispatcher FJ
for: #allDaysFeelsPositiveAssertionFor:
is: allDaysFeeModelHolder)
with: (PatAssertionFailureToErrorReporterDispatcher
for: #oneDayFeeIsPositiveAssertionfFor:
is: oneDayFeeModelHolder)))
forAllDaysIs: allDaysFeeModelHolder
forOneDayls: oneDayFeeModelHolder

Model holder for each “part”

AR 10 Pines

Ul Implementation - PatFeeRendererBuilder

createModelHolder
| allDaysFeeModelHolder oneDayFeeModelHolder |

allDaysFeeModelHolder := PatWebNumberModelHolder withNumberOfDecimals: 2.
oneDayFeeModelHolder := PatWebNumberModelHolder withNumberOfDecimals: 2.

~ (PatWebGenericCompositeModelHolderBuilder
s: #(#allDaysFee #oneDayFee)
handling: (Array

with: (PatAssertionFailureToErrorReporterDispatcher
for: #allDaysFee:isGreatherThanOneDayFeeAssertionFor:
is: oneDayFeeModelHolder)

with: (PatAssertionFailureToErrorReporterDispatcher
for: #allDaysFeelsPositiveAssertionFor:

is: allDaysFeeModelHolder) A CompOSIte

with: (PatAssertionFailureToErrorReporterDispatcher

for: #oneDayFeeIsPositiveAssertionfFor: rT1()(jf3| f]()l(jfar‘
i elidaldor)))
< forAllDaysIs: allDaysFeeModelHolder) fOI‘ PatFee
forOneDayls: oneDayFeeModelHolder

Using same instance creation
message s 10Pines

Ul Implementation - PatFeeRendererBuilder

createModelHolder
| allDaysFeeModelHolder oneDayFeeModelHolder |

allDaysFeeModelHolder := PatWebNumberModelHolder withNumberOfDecimals: 2.
oneDayFeeModelHolder := PatWebNumberModelHolder withNumberOfDecimals: 2.

~ (PatWebGenericCompositeModelHolderBuilder
for: PatFee
accessors: #
h . (Array
with: (PatAssertionFailureToErrorReporterDispatcher
for: #allDaysFee:isGreatherThanOneDayFeeAssertionFor:
is: oneDayFeeModelHolder)
with: (PatAssertionFailureToErrorReporterDispatcher
for: #allDaysFeelsPositiveAssertionFor:
is: allDaysFeeModelHolder)
with: (PatAssertionFailureToErrorReporterDispatcher
for: #oneDayFeeIsPositiveAssertionfFor:
is: oneDayFeeModelHolder)))
: DaysFeeModelHolder
forOneDayls: oneDayFeeModelHolder

Show errors on the right model holders
The model knows nothing about the UI 4 10 Pines

Ul Implementation - PatFeeRendererBuilder

Difficult to write?? Just write:

PatWebGenericCompositeModelHolderBuilder
for: PatFee

Let Smalltalk do the rest...
(Print it...) _ Smallaalk

PatWebGenericCompositeModelHolderBuilder

for: PatFee

named: 'PatFee’

accessors: #(allDaysFee oneDayFee)

handling: (Array
with: (PatAssertionFailureToErrorReporterDispatcher for: #allDaysFeeIsPositiveAssertionFor: is:)
with: (PatAssertionFailureToErrorReporterDispatcher for: #allDaysFee:isGreatherThanOneDayFeeAssertionFor: is:)
with: (PatAssertionFailureToErrorReporterDispatcher for: #oneDayFeelsPositiveAssertionFor: is:)))
forAllDaysIs: forOneDayls:

AR 10 Pines

How do we test ite - PatFeeTest

testFullFeeShouldBeGreatherThanOneDayFee

self
shouldnt: [PatFee forAllDaysIs: 10 forOneDaylIs: 9]
raise: #allDaysFee:isGreatherThanOneDayFeeAssertionFor: asExceptionToHandle.

self
should: [PatFee forAllDaysIs: 10 forOneDaylIs: 10]
raise: #allDaysFee:isGreatherThanOneDayFeeAssertionFor: asExceptionToHandle.

self
should: S: orOneDayls: 11 |
raise:C#allDaysFee:isGreatherThanOneDayFeeAssertionFor: asExcept10nToHaE§I§:>

Easy way to identify errors
No Exception hierarchy explosion
(Look at PatAssertionModel)

Angn.IC)F>"1€355

Tip 3: More Consequences

No more settersl!!

WHAT are you talking about Wilkins!!!

AvévA 10 Pines

No setterse

» We cannot have setters because
— An object could become invalid after a set
— Need to check validity on setters
- duplicated code
- Sometimes it is impossible (i.e. Date)

» But things do change!
— Do they really?...
— How often?

— The truth is most of the things are immutable (or we can
model them like that)

AV#VA 10 Pines

Tip 5: Think about

immutable objects

v 10 Pines

Immutability

» When does an object have to be immutable?
— When the entity it represents is immutable!!

» Examples:
— Number, Date, Time, Measure, etc

— Invoice (in Argentina it can not change once the system
generates it)

» Advantages
— No referential transparency problem

AV?A 10 Pines

But some things do change...

» Things that are supposed to be fixed but change:
« An Attendee can change his registration
- A talk can change its name
« A Reduction ticket can change its discount %

» How do we model “the change”?
— Within the same object (classic solution) ?
— With a relation {change, point in time} ?
— Create a new object as a result of an event ?

» Remember: Identity does not change!

I\\

AV#VA 10 Pines

Case 1: Create a new object as @
‘result of an event

» Bad invoice model
— Invoice cannot change in Argentina

anlnvoice

addLineDescribedBy: ‘iPhone’ value: 300 dollars
|

total

A321 dollars

We give the invoice to the customer

T

addLineDescribedBy: ‘something’ value: 10 dollars J

How do we prevent this for happening?!! Avﬁ 10 Pines

Case 1: Create a new object as @
‘result of an event

» Good invoice model
» Make time passing explicit

anlnvoiceForm

The e\§ addLineDescribedBy: ‘iPhone’ value: 300 dollars

>

tear]
| U]
Aanlnvoice

We give the invoice to the customer

addLineDescribedBy: ‘something’ vmdollars

T

addLineDescribedBy: ‘something’ value: 10 dollars

anlnvoice

ad

AV?A 10 Pines

Case 2: Relation {change,time}

» Convert systems from snapshots to "movies”

|

|

: ‘Apple
[Compu
|

|

|

|

|

ters’

State
{from,to}

State
{from,to}

|dentity

Case 2: Relation {change,time}

» Advantages
— Time queries
Persistence
Transaction
Audit
Makes time pass explicit

» Disadvantages
— New paradigm
— New execution model?
— New meta-model?

AVéA 10 Pines

Case 3: Using the same Objects

» Classic solution

aStock

issueAmount

MM pesos
! issueCurrency: dollar

Invalid

issueAmount: 1M doIIars>

v
time

* Same problem as object creation 44 10 Pines
\ 4

Case 3: Using the same Objects

» Proposed solution, synchronize at once!

Stock aStock

newlssuedIn: dollar forATotalOf: 1M dollar
NaNewStock

synchronizeWith: aNewStock

 Same advantages as object creation 45 10 Pines
\ 4

Tip 6: Change objects

synchronizing at once

i 10 Pines

Tip 6. Change objects synchronizing at once

New objects are created to reflect the changes

The original object synchronizes with the copy using just
one message (synchronization message or object)

Advantages:
— Business rules are kept in one place: instance creation
message

— Objects are always valid!
No setter means objects cannot be used as “data
holders”

— This is common in the UI
— Solution: “model holders” as we saw before

AV?A 10 Pines

How it works on the Ul — Setting the model

allDayValue

model: aFee

-\ m__’
oneDayValue
model:ﬁ,

6
Xmodel: 6
% oneDay
MH

&% 10 Pines

v

How it works on the Ul - Getting the model

syncWith: newFee

‘newFee b
ayls: 11 oneDay: 7

\ newFee

|

mode
oneDay
MH

» No special “object copy”, buffering, etc.
» If the user cancels, nothing gets changed

» Validations are done by model’s objects m10 Pines

... meaning of an object “in the system”e

» Model objects that handle the sets of cohesive
objects

» I call these object SubSystems. For example:
PatUserSystem
PatAttendeeSystem
PatPaymentSystem
PatTalkSystem
PatAwardSystem
and of course... PatPatagoniaSystem

» They have the responsibility of verifying the
business rules of an object “in the system”

AV#VA 10 Pines

Tip 7: Model system

architecture

v 10 Pines

Tip 7 — Example of PatAttendeeSystem

ueWith: (self validUserAssertionFor: anAttendee user)
with: (self noAttendeeRegisterWithUserAssertionFor: anAttendee user)

with: (self attendanceDatesIncludedOnConferenceDatesAssertionFor: anAttendee attendanceDates)
with: (self attendeeValidCountryAssertionFor: anAttendee country)

elf reductionTicketCanBeUseAssertionFor: anAttendee reductionTicket

ndees add: anAttendee. .
@nd\delcomeMaﬂSiIentlyTo: anAttende VerlfleS SYStem
~ anAttendee constrains

Does the real work

AvévA 10 Pines

Tip 7 — Example of PatAttendeeSystem

modifyAttendee: oldAttendee with: newAttendee

PatAsserti
ueWith: (self attendeelsRegisteredAssertionFor: oldAttendee)
with: (self attendanceDatesIncludedOnConferenceDatesAssertionFor: newAttendee attendanceDat
with: (self attendeeValidCountryAssertionFor: newAttendee country)
with: (self attendanceDatesOf: newAttendee canNotChangelfPaidAssertionFor: oldAttendee)
f reductionTicket: newAttendee reductionTicket canBeUseOrUsedByAsserti . oldAttendee).

e —

oldAttendee syncWith: newAttendee > Veriﬁes system
constrains

Does the real work

AngnAI(J FDir]EEES

Tip 7 - Advice

» Very important for concurrency

» Check everything... even though you know it
cannot happen due to UI implementation

— Because you know TODAY’S Ul implementation!,
somebody can change it!
— The Ul is not the only interface of your system! (Rest,
WebServices, etc.)
submitTalk: aTalk
PatAssertionsRunner
valueWith: (self talkNotDuplicatedAssertionFor: aTalk)
with: (self submissionCreatedByAttendeeAssertionFor: aTalk)

with: (self talkSubmittedBeforeSubmissionDeadlineAssertion).

submittedTalks add: aTalk

AvévA 10 Pines

Tip 7 — How does affect testse

testAttendeeCanSubmitATalk

| esug john |

Force you to have the

{ugm testObjectsFactory setUpEsug. r|ght setup
john := testObjectsFactory john.]
~gsug_register: john. Need for factory objects

self

shouldnt: [esug submitTalk: testdbjeftsFaftory johnTalkl]

raise: #submissionCreatedByAttendeeAgserfionFor: asExceptionToHandleJ
self assert: (esug numberOfSubmittedTa

testTalksShouldBeSubmittedByAttendees

| esug |

’,,esﬂﬁ—?:—;;;tObjectsFactory setUpEsug.

self deny: (esug existAttendeeldentifiedAs: testObjectsFactory ringo email).

\\\seli_gzzi:f: esug numberOfSubmittedTalks = 0.
self

should: [esug submItTatk—testObjectsFactory TINMGolalkl |

raise: #submissionCreatedByAttendeeAssertionFor: asExceptionToHandle.
self assert: esug numberOfSubmittedTalks = 0.

AR 10 Pines

Tip 7 - Advantages

» Objects are complete and valid (previous tips)
» Objects in the system are valid

» “One system to rule them all”
— PatPatagoniaSystem
- It is the one registered in the SeaSide application
- It is the root for all objects in GemStone

» We can do meta-programming on the
architecture!

» We can have different system implementations
— i.e. AuthenticationSystem
» We can distribute the systems...

AV#VA 10 Pines

Tip 7 — Advice: Model time system

> T_ests have to control EVERYTHING, also the

ProtoObject + currentYear
Object accessing + initialize
PatTimeSystem initialization moveNowForward
PatRealTimeTimeSystem |test support moveToNextDay
PatTestTimeSystem + NOW

now:
? class + toda
browse senders of..

: aDateTime

now := aDateTime

AVAVA 10 Pines

Tip 7 — Advice: Model time system

testTalksCanNotBeSubmittedAfterSubmissionDeadline
| esug john |
esug := testObjectsFactory setUpEsug.

joh
sug timeSystem now: esug submissionDeadline next atMidnight. ::::>

self assert: esug numberOfSubmittedTalks = 0.
self

should: [esug submitTalk: testObjectsFactory johnTalkl]

raise: #talkSubmittedBeforeSubmissionDeadlineAssertion asExceptionToHandle.
self assert: esug numberOfSubmittedTalks = 0.

For the tests, PatPatagoniaSystem uses a
PatTestTimeSystem

We control the time to test “time” related
constrains/events

AngnAI(J FDir]EEES

There are more things to talk about like...

» Assertions model

» Patagonia WebUI Model (not as nice as I would
like)

» But for sure we ran out of time...
2000 DN I

Y7 vvivwe CartoonStock com
£ e

AR 10 Pines

Conclusions

Axiom 1: Software as computable MODEL

Axiom 2: Software development as LEARNING PROCESS
Tip 1: Isomorphism between classes and concepts

Tip 2: Objects must be complete since its creation time
Tip 3: Verify domain rules at creation time

Tip 4: Do not use nil

Tip 5: Think on immutable objects

Tip 6: Synchronize objects at once

Tip 7: Model system architecture

>
>
>
>
>
>
>
>
>

Create your culture around these tips
Meta-Tip: Use tests to verify the use of these tips

AV#VA 10 Pines

Follow these tips and...

And you will Sleep tight

because you will have just 1
error in your system...

AN 10 Pines

Questions?

(\Af\.

@‘f GO
¢ — i ;

