
agile software development & services

Design	
 Principles	
 Behind	

PATAGONIA	

Hernán Wilkinson
hernan.wilkinson@10pines.com

What is Patagonia?

▶  A beautiful place…

But also…

▶  Conference Registration System

▶  Sponsored by ESUG

▶  Developed by 10Pines
▶  Developed with:

–  Pharo

–  Seaside 3.0 (using JQuery in some places)

▶  Production:
–  Pharo

–  Amazon Cloud

–  File based persistence (ReferenceStream… but
GemStone is the best option, no doubt about it )

What is Patagonia?

▶  User Registration front end

What is Patagonia?

▶  Group Registration front end

What is Patagonia?

▶  Administration front end

Some Statistics…

▶  Programming Errors: 1! (Fixed already)

▶  Functional gaps: some… we had to adjust as
always

▶  Tests: 136 (no as many as I would like…)

▶  Classes: 269 (It includes some not functionality
packages)

▶  Methods: 2415

▶  Lines Of Code: 16297
▶  Average Lines/Method: 6 (including comments…

should be less)

▶  To do’s: 55 

Some info…

▶  Used at ESUG 2010

▶  License: MIT

▶  Code: www.squeaksource.com/Patagonia
▶  Limitations:

–  Supports only paid conferences

–  Some functionality is coupled with ESUG

•  Invoice
•  Payment

–  Registration wizard not configurable

–  And others…

Why “Design Principles Behind…” ?

(sorry Dan for stealing your title…)

We will see some design
issues…

and

Some tips about how to avoid
them…

Some Important design problems we saw…

Abstractions created from a technical
perspective, not from the domain
problem one

–  UserDAO
–  UserService
–  … and User is just a data structure

Essential - Accidental

Some Important design problems we saw…

Objects without clear responsibilities
Schizophrenic objects

–  Too many responsibilities
–  Representing too many entities

Essential - Accidental

Some Important design problems we saw…

Tons of “nil doesNotUnderstand:” (or
NullPointerException in “that great”
language )

–  Difficult to see when an object “is
complete”

Essential - Accidental

Some Important design problems we saw…

Constraints not part of the model

–  Lots of invalid objects
–  Models that “do not teach” new

programmers

Essential - Accidental

Design Tips’ Goals

▶  Write Robust Software

▶  Write software that is easy to understand and
therefore to maintain
–  The model has to provide means for the humans to

understand it easily

–  The model has to help you learn it!

–  The model has to tell us when we make mistakes as
soon as we make them (immediate feedback)

▶  Computers to do more and programmers less
–  We will not care if it takes more time

–  We will prefer human time vs. computer time

How do you know if they are good?

… well you don’t

▶  Based on some years of experience…
–  I started writing down these “tips” more that six years ago

–  I used them to develop different systems (financial/desktop,
sales/web, patagonia, etc)

▶  Not sure if they apply to any kind of system

Let’s define software

Computable Model of a Problem Domain

R	

Problem	

Domain	

Computable	

Model	

Paradigm	

And software development as…

Knowledge acquisition Knowledge representation

A learning process… 

Software development

Analysis	

Design	
 Progra
mming	

Natural	
 Language	

• Informal	

• Incomplete	

• Tacit	

Diagrams	

• Informal	

• Incomplete	

• Explicit	

Programming	
 	

Language	

• Formal	

• Complete	

• Explicit	

A	
 difficult	

task	

Example – Patagonia Requirement

▶  We cannot have two conferences with the same
name

▶  A talk can not be registered twice (they can not
have the same name)

▶  We use the names as unique identifiers but…
–  Comparing them should not be case sensitive
–  Blanks don’t matter
–  They cannot be empty

▶  Where do we put that knowledge? Should we
represent that knowledge?

Example

For most people, they are just
Strings

For some solitary people (like me),
they have enough behavior to be
reified. I called them Name

Another Example

▶  Symbol  uniqueness
–  why don’t we name it “UniqueString” for example?

▶  But SOME symbols are “selectors”
–  They answer #isUnary, #isBinary, #precedence, etc

▶  One class is used to represent two different concepts
–  Knowledge representation problem…

?

same concept as
(pharo list discussion)

Another Example

If we remove #isBinary, #precedence to symbols, are they
still symbols?

I think two classes would be better, UniqueString and
MessageName (not even Selector… remember the axioms)

“A designer knows he has achieved
perfection not when there is nothing left
to add, but when there is nothing left

to take away”
(Saint Exupery)

So…

▶  I don’t want the programmer to think all the
time…
–  “here, is it only a symbol or a message name?”
–  Is this just a string or an identifier (a name)?
–  Is this just a number or an amount of money?

▶  I want…

computers do more… and people less…

Tip	
 1:	

	
 Try	
 to	
 have	
 an	
 Isomorphism	

between	
 classes	
 and	
 concepts	
 of	

the	
 problem	
 domain	

Tip 1: Isomorphism

▶  One to one mapping between classes and concepts

R

Problem
Domain

Model

Abstraction

Concrete

Implementation
Detail

Tip 1: Isomorphism

▶  No two classes for one concept (not common)

R

Problem
Domain

Model

Tip 1: Isomorphism

▶  No one class for two concepts

R

Problem
Domain

Model

Examples of one class, many concepts

▶  Symbol used to represent a day
–  #Monday represents the day Monday, so you can as a day (i.e.

Monday) if it is binary 

▶  Number to represent a year
–  Is the number 2008 a good representation of the year 2008?
–  What does it mean the factorial of year 2008?
–  How do you know if year 2008 is leap or not?

▶  Number to represent a measure
–  Is 10 a good representation for 10 dollars?

▶  String used to represent names (identifiers)
–  “Hernan” will not be the same as “HERNAN” or “ HeRnAn “

▶  Just code…
–  Is the code “initialCapital * interestRate * time” a good

representation of the Interest received in an investment?
–  Why not having an Interest class?

Tip 1 - Conclusion

▶  I’m not saying “create a class per each role they play in a
context”. Example
–  Numerator is not another class, we use integers to represent a

fraction’s numerator, and that integer will play the role of the
fraction’s numerator

▶  Some people say “It is more complex, you will have more
classes”
–  Remember Alan Kay?: “everything is about the verbs”
–  The number of messages will be the same!

•  #isBinary, #isKeyword, #precedence etc. will be in
MessageName but we will not add new messages to it that
were not in Symbol

▶  What we recognize as concept of the problem domain
depends on our analysis capabilities and design experience

Tip 1 - Conclusion

▶  Benefits:
–  Cohesion

–  Direct mapping between the model and the problem
domain

–  Well defined abstractions

–  Objects with clear responsibilities

–  Easier to understand

▶  QUESTION: How do we create objects?

Classic way to create objects

▶  Setters

Date aDate

new
^aDate

dayNumber: 14

monthNumber: 11

yearNumber: 2008

time

Incomplete
Reachable

Complete

isLeap

error

Classic way to create objects

▶  Disadvantages:
–  The user of the object has the responsibility of

“completing” it

–  That responsibility is distributed, error prone, not easy
to maintain

–  No easy way to ensure its completeness because
nothing define when everything is set

–  There is a time span where the object does not
represent anything!

–  Nothing prevents us from changing the object

Proposed way to create objects

▶  The object must represent the entity since time
zero

Date aDate

dayNumber: 14 monthOfYear: November, 2008

^aDate

time

Unreachable

Complete

initializeDayNumber: 14
 monthOfYear: November, 2008

new
^aDate

Tip 2: Objects must be
complete since their

creation time

Tip 2: Implementation - PatAttendee

One instance creation
message that will

receive all the objects

▶  One initialization message

▶  initializeXxx pattern

Tip 2: Implementation - PatConference

One “real” instance
creation message

All instance creation messages send the
“real one”

Tip 2: Advantages

▶  Objects will always answer no matter “when” the
message is sent (they are “complete”)

▶  Programmer will not worry about “can I send this
message here/now?” (we are simplifying the
protocol!)

▶  Easy and consistent implementation
–  Only one method does new and send initialize…

–  Pattern: named: xxx  initializeNamed: xxx

–  Easy to check that nobody but the class sends the
initialization message

Tip 2: To think about…

▶  An object that is “filled out” later, should be
represented at least by two objects
–  We will see an example…

▶  QUESTION: But, are the objects really “valid”??

Valid Objects

▶  Should the model check that objects
are valid?

▶  If an object represents an entity of
the problem domain, what does an
“invalid” object represent?

▶  If we allow invalid objects to exist,
how are the programmers going to
learn “from the model”?

We need “Self Defensive” Objects

▶  YES, our model should be:
–  “self defensive” and
–  “auto documented” about validity rules/

constrains

Where should objects be self defensive?

▶  On the method that creates the object?
–  Repeated code  Error prone

▶  Is the UI responsibility
–  that a number has to be > 0?

–  that a string can not be empty?

▶  What about the instance creation message itself?
–  If one of the class responsibility is to create objects, why

not validate its creation first?

Example - PatFee

(this is just an implementation example… you could
use other implementation…)

Tip 3: Only Allow Valid
Objects to Exist

Tip 3: Advantages

▶  Only VALID objects!!

▶  The model tells us when we make mistakes!! 
learning feedback!!

▶  Easy to use and implement

▶  Some business rules are reified (we will need
more)

▶  We can meta-program on them…
–  Do you want to document when a fee is valid, just look

at its creation assertions

Tip 3: Consequences

▶  If we have only complete and valid objects…
–  Do we need to use nil?

–  All variables reference to objects that are not nil…

Tip 3: Consequences

No need for nil!!

… a world without nil

It’s easy if you try…

you may say I’m a dreamer…

… but I’m not the only one

“Null References: The billon dollar
mistake” (Tony Hoare)

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

Tip 4: Do not use nil

Problems with nil

▶  nil is handy, but has so many meanings that
makes it impossible to handle it correctly
–  “Is this variable nil because it was not initialized or was

it initialized with nil?”

▶  nil is not polymorphic with any other object,
therefore:
–  It forces us to use “isNil ifTrue:”

–  Error prone

Tip 4 - Advice

▶  Reify what the absence of something represents
(null object pattern kind of)

▶  Never use the “abstract” word in the class name
 (Thanks Leandro Caniglia!)

Tip 4 – To think about

▶  Can we have an Image without nil?

▶  Object superclass  nil
–  Why not NoSuperclass ? (no need

with ProtoObject)

▶  What about NotInitializedVariable
instead of nil?

▶  Remember MouseOverHandler? (lots of problems??)

Going back to Tip 3: Consequences

▶  Can we show assertions description to the user?
–  YES!!  Error descriptions are in one place, with the

assertions

–  We should show more than one error description at the
same time

–  We should show error descriptions in the right place

to

and

Tip 3: Consequences in the UI

UI Implementation - PatFeeRendererBuilder

Model holder for each “part”

UI Implementation - PatFeeRendererBuilder

A composite
model holder
for PatFee

Using same instance creation
message

UI Implementation - PatFeeRendererBuilder

Show errors on the right model holders
The model knows nothing about the UI

UI Implementation - PatFeeRendererBuilder

Difficult to write?? Just write:

Let Smalltalk do the rest…

(Print it…)

How do we test it? - PatFeeTest

Easy way to identify errors

No Exception hierarchy explosion

(Look at PatAssertionModel)

Tip 3: More Consequences

No more setters!!

WHAT are you talking about Wilkins!!!

No setters?

▶  We cannot have setters because
–  An object could become invalid after a set

–  Need to check validity on setters
•  duplicated code
•  Sometimes it is impossible (i.e. Date)

▶  But things do change!
–  Do they really?...

–  How often?

–  The truth is most of the things are immutable (or we can
model them like that)

Tip 5: Think about
immutable objects

Immutability

▶  When does an object have to be immutable?
–  When the entity it represents is immutable!!

▶  Examples:
–  Number, Date, Time, Measure, etc

–  Invoice (in Argentina it can not change once the system
generates it)

▶  Advantages
–  No referential transparency problem

But some things do change…

▶  Things that are supposed to be fixed but change:
•  An Attendee can change his registration

•  A talk can change its name

•  A Reduction ticket can change its discount %

▶  How do we model “the change”?
–  Within the same object (classic solution) ?

–  With a relation {change, point in time} ?

–  Create a new object as a result of an event ?

▶  Remember: Identity does not change!

Case 1: Create a new object as a
result of an event

▶  Bad invoice model
–  Invoice cannot change in Argentina

anInvoice

total
^321 dollars

addLineDescribedBy: ‘iPhone’ value: 300 dollars

addLineDescribedBy: ‘something’ value: 10 dollars

We give the invoice to the customer

How do we prevent this for happening?!!

Case 1: Create a new object as a
result of an event

▶  Good invoice model

▶  Make time passing explicit

anInvoiceForm

tear
^anInvoice

addLineDescribedBy: ‘iPhone’ value: 300 dollars

addLineDescribedBy: ‘something’ value: 10 dollars

We give the invoice to the customer anInvoice

addLineDescribedBy: ‘something’ value: 10 dollars

dnu

The event

Case 2: Relation {change,time}

▶  Convert systems from snapshots to “movies”

aStock	
 State	

{from,to}	

‘Apple	

Compu
ters’	

…	

‘Apple’	

…	

State	

{from,to}	

time
Identity State

Case 2: Relation {change,time}

▶  Advantages
–  Time queries

–  Persistence

–  Transaction

–  Audit

–  Makes time pass explicit

▶  Disadvantages
–  New paradigm

–  New execution model?

–  New meta-model?

Case 3: Using the same Objects

▶  Classic solution

aStock

issueCurrency: dollar

issueAmount: 1M dollars

issueAmount
^1M pesos

time

Invalid

Valid

…

•  Same	
 problem	
 as	
 object	
 creaTon	

Case 3: Using the same Objects

▶  Proposed solution, synchronize at once!

Stock

synchronizeWith: aNewStock

newIssuedIn: dollar forATotalOf: 1M dollar
^aNewStock

•  Same	
 advantages	
 as	
 object	
 creaTon	

aStock

Tip 6: Change objects
synchronizing at once

Tip 6: Change objects synchronizing at once

▶  New objects are created to reflect the changes
▶  The original object synchronizes with the copy using just

one message (synchronization message or object)
▶  Advantages:

–  Business rules are kept in one place: instance creation
message

–  Objects are always valid!

▶  No setter means objects cannot be used as “data
holders”
–  This is common in the UI
–  Solution: “model holders” as we saw before

How it works on the UI – Setting the model

feeMH	

allDays	

MH	
 oneDay	

MH	

aFee	

model: aFee

model: 10

model: 6

allDayValue

oneDayValue

^10

^6

How it works on the UI – Getting the model

feeMH	

allDays	

MH	
 oneDay	

MH	

aFee	

…	

model

model
model ^11 ^7

syncWith: newFee

PatFee	

^newFee
allDayIs: 11 oneDay: 7

^newFee

▶  No special “object copy”, buffering, etc.

▶  If the user cancels, nothing gets changed

▶  Validations are done by model’s objects

… meaning of an object “in the system”?

▶  Model objects that handle the sets of cohesive
objects

▶  I call these object SubSystems. For example:
–  PatUserSystem

–  PatAttendeeSystem

–  PatPaymentSystem

–  PatTalkSystem

–  PatAwardSystem

–  and of course… PatPatagoniaSystem

▶  They have the responsibility of verifying the
business rules of an object “in the system”

Tip 7: Model system
architecture

Tip 7 – Example of PatAttendeeSystem

Does the real work

Verifies system
constrains

Tip 7 – Example of PatAttendeeSystem

Does the real work

Verifies system
constrains

Tip 7 - Advice

▶  Very important for concurrency

▶  Check everything… even though you know it
cannot happen due to UI implementation
–  Because you know TODAY’S UI implementation!,

somebody can change it!

–  The UI is not the only interface of your system! (Rest,
WebServices, etc.)

Tip 7 – How does affect tests?

Force you to have the
right setup

Need for factory objects

Tip 7 - Advantages

▶  Objects are complete and valid (previous tips)

▶  Objects in the system are valid

▶  “One system to rule them all”
–  PatPatagoniaSystem

•  It is the one registered in the SeaSide application
•  It is the root for all objects in GemStone

▶  We can do meta-programming on the
architecture!

▶  We can have different system implementations
–  i.e. AuthenticationSystem

▶  We can distribute the systems…

Tip 7 – Advice: Model time system

▶  Tests have to control EVERYTHING, also the
time…

Tip 7 – Advice: Model time system

For the tests, PatPatagoniaSystem uses a
PatTestTimeSystem

We control the time to test “time” related
constrains/events

There are more things to talk about like…

▶  Assertions model

▶  Patagonia WebUI Model (not as nice as I would
like)

▶  But for sure we ran out of time…

Conclusions

▶  Axiom 1: Software as computable MODEL
▶  Axiom 2: Software development as LEARNING PROCESS
▶  Tip 1: Isomorphism between classes and concepts
▶  Tip 2: Objects must be complete since its creation time
▶  Tip 3: Verify domain rules at creation time
▶  Tip 4: Do not use nil
▶  Tip 5: Think on immutable objects
▶  Tip 6: Synchronize objects at once
▶  Tip 7: Model system architecture

▶  Create your culture around these tips
▶  Meta-Tip: Use tests to verify the use of these tips

Follow these tips and…

And you will Sleep tight

because you will have just 1
error in your system…

agile software development & services

QuesTons?	

