

Multi Core Playground

How can
we get the
most out

of our
modern
CPU’s?

Arden Thomas
Cincom’s Smalltalk
Product Manager

Multi-Core Computers

• Are becoming ubiquitous….

• Quad cores from Intel & AMD are becoming
commonplace

• 8,16,64 cores around the corner?

Cincom Smalltalk™ Roadmap Item

• “Research ways to leverage Multi-Core computing”

• This item was a magnet – lots of interest

What is the Attraction?
• Making the most of what you have:

Rear Admiral Grace Murray-Hopper

• Distinguished computer scientist

• Was there when they took a moth
 out of the relays of an early
 computer (“getting the bugs out”)

• Had a great ability to convey ideas
 in easy to grasp perspectives

Grace Murray-Hopper

“When the farmer, using a horse, could not
pull out a stump, he didn’t go back to the

barn for a bigger horse,
he went back for
another horse.”

Using Multi-Core Computers

• “Team” of horses

• Type of concurrent programming

• On the same machine / OS
 Generally faster
 More options (i.e. shared memory, etc)

…A ‘Small’ Matter of Programming….

• Most Concurrency is NOT EASY

• Concurrency problems and solutions have been studied
for decades

…A ‘Small’ Matter of Programming….

• Both AMD & Intel have donated money and personnel to
Universities doing concurrency research
 Specifically with the intent of increasing market demand for their

products

“As the Power of using
concurrency

increases linearly,
the complexity

 increases exponentially”

…A ‘Small’ Matter of Programming….

Approaches to Using Multi-Cores

Core 1 Core 2 Core 3 Core 4

Multiple Applications

Approaches to Using Multi-Cores
• Multiple Applications

• Advantages
 Simple
 Easy
 Effective
 Minimal contention

• Disadvantages
 Multiple independent applications needed
 Not necessarily using multi-cores for one problem

Multiple
Process

Threads in
a Single

Application

Approaches to Using Multi-Cores

Thread 1
Thread 2

Thread 3

Core 1 Core 2 Core 3 Core 4

• Multiple Process threads in a single application

• Advantages
 Threads have access to the same object space
 Can be effective concurrency

• Disadvantages
 Object contention and overhead
 Usually significant added complexity
 Threads (if native) can take down the whole application in

severe error situations

Approaches to Using Multi-Cores

• Multiple Process threads in a single application

 Multiple “green” (non native) threads available in
VisualWorks/ObjectStudio8

• This can still be very effective

 Modeling producer/consumer problems

 Effective example later

Approaches to Using Multi-Cores

Some Smalltalk Objects for
Concurrency

• Process

• Semaphore

• Promise (a kind of ‘Future’)

• SharedQueue

Multiple
Process
Threads
in a CST

VM

Execution thread

Garbage
collection thread JIT thread

Approaches to Using Multi-Cores

Core 1 Core 2 Core 3 Core 4

• Multiple Process threads in a CST VM
Note that the idea is just an example for discussion, product management brainstorming

• Advantages
 Use of multi-cores even with single threaded applications

• Disadvantages
 Time & resources to develop VM
 Feasibility and stability questions

Approaches to Using Multi-Cores

Approaches to Using Multi-Cores
Coordinated

Multiple
Applications

Core 1 Core 2 Core 3 Core 4

Approaches to Using Multi-Cores
• Coordinated Multiple Applications

• Advantages
 Smaller changes in code needed
 Fairly Easy & Effective
 Could be Scaled to number of Cores
 Fewer contention issues
 Doable without VM changes

• Disadvantages

Approaches to Using Multi-Cores
Shared Object

Memory &
Coordinated Multiple

Applications

Core 1 Core 2 Core 3 Core 4

Approaches to Using Multi-Cores
• Shared Object Memory with Coordinated Multiple

Applications

• Advantages
 Can solve a broader set of problems
 Can bring multiple cores to bear on the same object set

• Disadvantages
 Garbage collection complications
 Need to coordinate or manage sharing (traditional concurrency

problems)

Product Management Requirements
• Research into ways to utilize multi-core computers

 We can add multiple facilities & abilities over time

• Something "Smalltalk simple“
 A simple mechanism that is simple, effective, and high level
 Not Smalltalk implementation of generally hard things

• Avoids most of the traditional problems and difficulties if possible
 Minimize contention, locking, ability to deadlock

• Is flexible enough to be the basis for more sophisticated solutions
as situations warrant

Polycephaly

• Engineering experiment

• Assists in starting and managing headless images
 Handing them work
 Transporting the results

Polycephaly – What it Isn’t

We have not magically invented some
panacea to the difficult issue of

concurrency

Polycephaly – What it Is

• A simple framework that allows a subset of concurrency
problems to be solved

• For this class of problems, it works rather nicely

Experiment

• Take some code that performs a task

• See how overall time to perform the task could be
improved, using concurrency

• Use the Polycephaly framework

• Goal:
 See if substantial improvements, via concurrency could be made

with a small, minor and simple amount of effort.

Task
• Loading market security information

 Stocks
 Mutual Funds
 ETFs

• Two Sources
 Files from Nasdaq

• For NYSE, AMEX, Nasdaq

 HTTP
• Mutual Funds (around 24,000!)

Baseline Code

• Original sequential load code:

nyse := Security loadNYSE.
amex := Security loadAMEX.
nasd := Security loadNasdaq.
funds := MutualFund load.
etfs := ETF load.

Time Baseline - Code Run
Sequentially

Baseline 1

110.0 112.5 115.0 117.5 120.0

Loading time

Loading time

Experiment I

• Make the five loads work concurrently using Polycephaly

Experiment I• Concurrent load code:
nyseLoad := self promise: ‘Security loadNYSE'.
amexLoad := self promise: ‘Security loadAMEX'.
nasdLoad := self promise: ‘Security loadNasdaq'.
fundsLoad := self promise: ‘MutualFund load'.
etfsLoad := self promise: ‘ETF load'.

• nyse := nyseLoad value.
amex := amexLoad value.
nasd := nasdLoad value.

Experiment I

• promise: aString
| machine |
 machine := VirtualMachine new.
 ^[| val |
 val := machine doit: aString.
 machine release.
 val] promise

Experiment I

Experiment 1

Baseline

80 90 100 110 120

Load Time

Load Time

Experiment I

loadNYSE

loadAMEX

loadNasdaq

loadFunds

loadETFs

15.00 31.25 47.50 63.75 80.00

Series 1

Series 1

Experiment I - Bottleneck

loadNYSE

loadAMEX

loadNasdaq

loadFunds

loadETFs

15.00 31.25 47.50 63.75 80.00

Series 1

Series 1

Experiment II – Addressing the
Bottleneck

• loadFunds took the majority of the time

• Loads information for over 24,000 Mutual Funds

• Loads via http

• Loads all Funds starting with ‘A’, then ‘B’ ….

• So try making each letter an independent task ….

Experiment II – Addressing the
Bottleneck

• Create n “drones” (start n images)

• Each drones grabs a letter and processes it
 Then returns the results to the requesting image

• When done it asks for another letter

• For n from 3 to 20

Experiment II – Addressing the
Bottleneck

• Time with: 3 drones: 30244
Time with: 4 drones: 22373
Time with: 5 drones: 20674
Time with: 6 drones: 18271
Time with: 7 drones: 18570
Time with: 8 drones: 17619
Time with: 9 drones: 17802
Time with: 10 drones: 17691
Time with: 11 drones: 19558

• Time with: 12 drones: 18905
Time with: 13 drones: 17658
Time with: 14 drones: 19696
Time with: 15 drones: 21028
Time with: 16 drones: 19704
Time with: 17 drones: 21899
Time with: 18 drones: 19400
Time with: 19 drones: 19884
Time with: 20 drones: 20698

Experiment II – Addressing the
Bottleneck

• Points to note about the solution
 Times include

• Start-up of drone VM’s
• Object transport time

Experiment III – Addressing the
Bottleneck, Revisited

• Lets take another look at the problem

• 26 http calls
 Call
 Wait
 Process
 Repeat

Bottleneck Revisited– the Orange Issue

Call
Wait
Process

This Wait is the time waster

Bottleneck Revisited- Sequence

offset
Call
Wait
Process wait
Process

Bottleneck Revisited – Overlap
Solution

offset
Call
HTTP wait
Process wait
Process

Work Done overlapping the wait

Code for the Curious ….

1 to: n do: [:i |

[| char |

 [char := queue nextAvailable. char isNil]

 whileFalse: [results nextPut: (Alpha.MutualFund loadForChar: char)].

 done signal] fork].

n timesRepeat: [done wait].

Bottleneck Redux – Overlap Solution

• Results
 Used 13 green threads
 Reduced the load time to 15 seconds!
 All in one image

What about 26 threads?

Putting it All TogetherCoordinated
Multiple
Applications

loadNYSE

loadAMEX loadNasdaq loadFunds

loadETFs

Core 1 Core 2 Core 3 Core 4

Putting it All Together

Experiment 3

Baseline

22.500 71.250 120.000

Load Time

Load Time

Putting it All Together

• Final overall load time using 5 drones, along with
threaded http calls for loadFund, saw overall load time
improve from 114 seconds to 35 Seconds
 The 35 seconds includes all image startup and transport time

Some Observations
• Measure the elapsed time of work - it helps to know where the

problems are in order to address them

• There are multiple way to do concurrency. In one experiment, I
backed off using the new framework, because a simpler approach
worked better. This was a pleasant surprise - the green thread
model was actually very well suited for that problem. I ended up
combining both for a superior solution.

• Strive for simplicity. Remember if it gets out of hand, concurrency
can get ugly and difficult very quickly. Follow the KISS principle
(Keep it Simple, Smalltalk ;-)).

Some Observations

• The launch of drone images was faster than I expected

• Drone images are instances of the main image

• As mentioned in the commentary, my measurements
included startup and shutdown of images, a (overly?)
conservative approach that may be atypical to how
many use this technology. Results would be even
better had I not included that.

• The experimental work has some pieces that I think
show a lot of foresight. Mechanisms for handling some
common issues. Like what?
 If I had a dozen drone images running and lost my references

and the ability to close them, closing the main image shuts
everything down. Things like that save a lot of time, avoid
aggravation, and make it fun.

 If I started a local process, which in turn started a drone, then
later I terminated that process, the drone would be terminated.

 Remote errors can be retrieved locally

Some Observations

Conclusions

• I believe my requirements of providing one means of
concurrency with maximum gain and minimum pain are
met

• My expectations on the simplicity and robustness of the
experimental framework were surpassed

© 2009 Cincom Systems, Inc.
All Rights Reserved

Developed in the U.S.A.
CINCOM and the Quadrant Logo are registered trademarks of Cincom Systems, Inc.

All other trademarks belong to their respective companies.

