
Inventing the future
Business Programming Language

Inventing the Future
Business Programming Language

 Inventing a new
business
programming
language
may be an
act of insanity.

 But someone
will eventually
do it.

The future is now.
The nature of the thing
we are programming
is changing.

 Traditional programming languages
are designed around the concept
of a programmable calculator.

 But this model has always been
largely irrelevant for business automation.

 Object-oriented languages extend the calculator model
the statement syntax is still bound to an algebraic pattern.

Any major business process involves a
network of collaborating agents

How do we program a network of collaborating agents?

Instead of Algebra
– use natural language syntax.

 Follow the conventions of written natural language.

 Use a syntax that is convenient to the user.
Avoid syntax that is not.

 A good notation
should be readable
and easily entered. <XML>

How do we make natural language
work?

 The whole statement is the
“method signature.”

 The nouns in the statement
identify variables.

 Variables are assigned
values from a white-board.
(context relevant data
store)_

If we are programming
a network of collaborating agents,
what kind of notations do we need?
 Plan: For each business goal, we need a plan.
 Procedure: For each action, we need a procedure.
 Dictionary: Identify nouns and their relationships.
 Data: Transport request/response messages.

 Dialog: Provide the client / user interface.
− Respond to client questions and commands.
− Client invokes goals / actions.
− Dialog may also be informational.

 View: Provide document metaphor.
− Fill-in-the-blank forms. (Render as HTML form ...)_

Nouns identify variables.
Nouns identify entities, attributes.

Dictionary: Energy service vocabulary.
 Site attributes include type, address, route.
 A site has a collection of services.
 Service attributes include type, meter, remote-switch.
 A service is a product.
 Meter attributes include type, configuration, GPS.
 A meter is a distribution-asset.
 A distribution-asset is an asset.

This is a dictionary frame. Each dictionary frame identifies
entities, attributes, super-types, collections, and categories (enumerations).

How do we provide inheritance?
 Dictionary frames include

“... is a ...” statements.

 These statements
identify super-types.

 The statement matching process
enables subtype nouns
to be used in the slot
for a super-type.

How do we enable
specialization?

 Two different action statements
may have a signature that only differs by the
subtype / super-type in the same word slot.

 When matching a reference to a definition,
the interpreter prefers the subtype version
to the super-type version.

 Naturally, natural language notations
enable internationalization.

 There is a small number of keywords and a small
number of domain-specific statement patterns.
These can be replaced with equivalents
from most European languages.

 I do not have the expertise
to address the question
of other languages.

Work-flow is the essence of
business process automation
Task: Start electrical service for customer at site.
Post-Condition: Electrical service at site billed to

customer's account.
Preconditions:
 Customer's account approved for credit.
 Electrical service installed at site.
 Electric meter installed on service.
Action:
 Field Service: Turn-on the electric service.

This is a task frame. Each task frame describes

a goal, a set of precedence relations, and a transitional action.

Chain task frames into plan trees.

 A plan tree is formed by back chaining
from a goal through the task-frame preconditions.

 The action statement in a task frame may be
executed when the preconditions are met.

 Enabled tasks on the “branches” of the tree
may be processed concurrently.

 Parallel processing is implicit in the notation.

Agents are assigned actions.
Role: Field Service.

Action: Turn-on the electric service.
 If service meter has remote-power-switch:

− AMI: Signal the meter to turn-on the service.
 Else:

− Dispatcher: Send a one-man crew to turn-on the service.

This is a role-action frame.

Each action frame describes a set actions

that may be assigned to a role.

An role may delegate some steps to other roles.

Task frame ==> parallel process.
Action frame ==> sequence.

The future
is now ...

 In the future ...
− The reception desk

may be in a virtual world.
− The user interacts with an avatar.

 Sensors are evolving.
− Dialog logic should not be tied to specific sensors.

 The user interface may be rendered
in multiple ways using multiple media.
− Dialog logic should not depend on the rendering.

Programming the avatar - speaking part
Dialog: Hello yourself.
Context: Greeting.

User: Knock, knock.
System: Who's there?

User: *.
System: * who?

This is a dialog frame. The notation is similar to a stage play,
but pattern matching enables flexible dialogs (protocols)
with variable input and output.

Responding to sensors ...

Dialog: Space flight simulator.
Context: Pitch and roll rate. (Translate from control stick.)_

U: Make the pitch and roll rates P and R degrees per second.
S: (Don't talk. Just do it.)_
. Pitch-Thruster: Produce P degrees/second change in pitch.
. Roll-Thruster: Produce R degrees/second change in roll rate.

Sensor inputs are mediated by a scribe (dialog agent)
to isolate technology dependence.

Fill-in-the-blank ... (Electronic Forms)
View: User.

!!! User Preferences

E-Mail: [e-mail] Name: [name]

Digest frequency: [digest-frequency]

Self description: [description 5]

Fields are rendered according to type.
Example: The digest-frequency field is a category (enum)
 typically rendered as a drop-down list.

This is a view frame
defining a fill-in-the-blank
electronic form.

The notation is similar
to wiki mark-up.

Don't waste time on data processing.
Use built-in standard solutions.

 Persistence: Programmers spend too much time
deciding what to store, when, and how.

 Messaging: Programmers spend too much time
deciding what to send, when, and how.

 Conversion: Programmers spend too much time
writing code that converts measurements
between currencies and units of measurement.

 Metrics: Programmers spend too much time
writing code for standard accounting and metrics.

Persist everything.
Purge per records retention policy.

 Don't waste time designing persistence.
 Change the problem from persistence to retention.

World Base … Temporal Database
 Micro-fact: (entity, attribute: value, w5).

− Smalltalk: (entity, attribute) -> (value, w5).

 Event (w5): (who, what, when, where, why).
− Who: data source (user or client identifier)
− What: statement causing the change.
− When: timestamp (UTC)
− Where: agent mediating the change
− Why: job ticket

 History: (entity, attribute, time-period: value, w5).
− time-period: (when start, when end).

Messenger
Do it once, one way.

 Actions are work-orders.

 Agents check-in / out
with Resource Manager.

 Messenger provides
store-and-forward
asynchronous network.

In business data,
numbers are
measurements,
not mathematical
abstractions.
 Spurious precision

should be obsolete.
 Track error propagation.

 Track unit of measure.
 Provide automatic conversion

to preferred unit of measure.

…
after

the
horse

has
left

 the
barn

Resource Accounting
Job Ticket
 Assign a job ticket

to each client request.

 Track
resources consumed
by the job.

 Sub-job (delegated task)
rolls up to parent job.

Bookkeeper
 Accumulate

resource usage by:
− Job
− Agent
− Resource Pool
− Action
− Goal
− Client
− (custom dimensions)

 Track inventory.

 Pricing is a plug-in.

Resource Manager -- Plug In

For many
enterprises,
specialized

resource
scheduling

is a
secret
sauce

How do you test a business process?

Simulations:
 Agents replaced by “sim-bots.”

 Drive from dialog frames
using standard regression testing tools.

 Drive from message history (requests to agents).

 Durations from history (bookkeeper).
 Durations from annotations.

 World-Base snapshot from real-world world-base.

The critical component is the
open-source community process.

 The thing that distinguishes frameworks today
is their community process.

 Think about how the community process makes
current frameworks quite different:
− CORBA ... UML ... MDA ... ebXML ... BPEL
− Apache ... Mozilla ... JBoss
− BSD Unix ... Linux ... Ubuntu
− C++ ... C# ... Java ... Python ... Smalltalk

The critical component is the
open-source community process.

 The thing that distinguishes frameworks today
is their community process.

 Think about how the community process makes
these frameworks quite different in character:

− CORBA ... UML ... MDA ... ebXML ... BPEL
− Apache ... Mozilla ... JBoss
− BSD Unix ... Linux ... Ubuntu
− C++ ... C# ... Java ... Python ... Smalltalk
− Second Life … Croquet Consortium

Extensions / Plug-Ins / Sub-projects
Infrastructure
 Smart IDE

− Code Critic
− Version Control
− Ontology Merge

 Messenger
− Hub
− Gateway
− Peer to Peer

 World Base
− OQL
− Extract (Simulation)_
− Export (to RDBMS)_

Application
 Bookkeeper

− Resource Pricing
− Inventory Pricing

 Domain Dictionaries
− Utility Vocabulary
− Factory Vocabulary
− Retailing Vocabulary

 Business Templates
− Customer Relations
− Order Fulfillment
− Utility
− School

Summary
 A programming environment is a set of notations

and a run-time.
 Each notation presented here is derived from a

well-known notation in another domain.
 The language design assembles the notations

into a consistent and coordinated system.

 While the notations provide a better and more
efficient expression of intent,
the bigger break-through comes from eliminating
repetitive data processing tasks
from the programmer’s work-load.

How and Why
How
 Pick application area.
 Identify audience.
 Design notations.
 Try them out.
 Refine (iterate).

 Write the manual first.
 Write translator.
 Write the run-time.
 Iterate some more.

 Deploy a usable product

Why
 Scratch your itches

− There ought to be
a better way.

− Tired of solving
the same problem
over and over

 New environments
− new problems
− new opportunities

 Advance
the state of art
− Identify problems
− Find the root cause

Questions
and
Answers

