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Abstract
Long-lived systems rely on reflective self-modification to
evolve. Unfortunately, since such a system is at both ends
of a causal loop, this means modifications that impact the
reflective layer itself can be overly difficult to apply.

This paper introduces ObjectSpaces, a reification of the
familiar Smalltalk image as a first-class entity. By confining
the system inside an ObjectSpace, we isolate the evolution
tools from it, while still giving them reflective access to
the confined system. We describe the ObjectSpaces idea,
the interface to communicate, inspect, and debug objects
contained inside and ObjectSpace, based on a prototype
implementation in GNU Smalltalk.

Categories and Subject Descriptors D.3.2 [Programming
languages]: Smalltalk; D.2.3 [Software Engineering]: Cod-
ing Tools and Techniques

General Terms Languages

Keywords Reflective Systems, Meta Programming, Dy-
namic Languages, Smalltalk

1. Introduction
Smalltalk images exemplify everlasting, evolving software
systems. An image is a persistent memory snapshot of a
Smalltalk system, complete with all objects that take part in
the system’s execution. In fact, today’s Squeak images inherit
objects that date back to the original Smalltalk-80 system.

Images are interesting because they support an unusual
approach of program evolution. Since the whole system
resides in the image, including tools like the compiler and
debugger, a Smalltalk program is a self-modifying persistent
environment, more closely resembling the operating system
installed on a physical workstation than a single executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IWST’09 August 31, 2009, Brest, France.
Copyright © 2009 ACM 978-1-60558-899-5. . . $5.00

image

modifies surgeon 
image

modifies

patient 
image

Figure 1. From self-modifying images to separate surgeon/-
patient images. The development tools in the surgeon image
can change core classes and methods in the patient image
without being impacted themselves.

file or process. Also, the image is persistent, so programs do
not need to boot and initialize themselves from scratch each
time they are invoked; instead, programs can just live here
and answer requests, keeping and migrating their state across
evolutions of the code and data structures.

However, the self-modifying image is both a blessing and
a curse. While it enables to save the image in the middle
of a debugging session, and re-open it on another physical
machine to find the debugger and halted program in the same
bit-identical state, it also makes it very easy to inadvertently
break code on which critical systems like the compiler or
debugger depend. Moreover, it is not à priori obvious which
code is safe to change; an example of such sensitive code is
the pervasively used iterator method Array » #do: [5].

To make a real-life analogy, while it is easy to self-treat
small wounds, it’s more difficult for a neuro-surgeon to
operate on himself. What we want is to clearly separate code
that acts as the surgeon from code that acts as the patient in
separate images1, as shown in Figure 1.

In this paper, we introduce ObjectSpaces, a reification of
the image as an abstraction for delimiting and isolating a
group of objects —the patient— while giving full visibility
of its contents to another system —the surgeon. Additionally
to any domain objects, an ObjectSpace also contains a copy
of the necessary system methods, classes, and globals, so it
is in effect a self-contained Smalltalk system. To the surgeon,

1 . . . and, to perform self -surgery, resort to clones and memory backups like
in John Varley’s novel The Ophiuchi Hotline [13].



an ObjectSpace appears as a meta-object with facilities
for inspecting and changing objects of the patient system.
However, that meta-object ensures that no reference from the
surgeon enters the patient, thus preventing the patient from
causing any side-effect on the surgeon. Development tools
running in the surgeon can thus control the patient, modify
its objects, change sensitive methods, or bootstrap core class
structures without risk of self-interference.

The remainder of the paper is structured as follows: Sec-
tion 2 presents the problem. We describe why Smalltalk im-
ages are very sensitive to changes. Section 3 presents our
approach. In Section 4, we illustrate how ObjectSpaces work
from the user standpoint, then we describe the prototype im-
plementation in Section 5. Finally, we present related work
in Section 6, before discussing some open questions and
concluding in Section 7.

2. Controlling the Impact of System Changes
Some methods or classes in a Smalltalk image are very sen-
sitive to changes, either because they are used pervasively
throughout the system, or take part in important subsystems
like the user interface, the compiler, the debugger, the meta-
class hierarchy, or classes that are well-known to the virtual
machine. This is because Smalltalk has a single scope where
not only everything is visible, but also reflectively accessible.
Any breakage in this kind of code usually leads to spectacular
failure. A simple example would be adding a breakpoint in
the iterator method Array » do:. In Pharo Smalltalk, adding
this breakpoint impacts about 90000 Array instances and the
image freezes [5]. It is thus very difficult to debug or change
this code in a realistic setting, without risking to impact the
whole image.

But the fact is, some evolutions do require changes to
this sensitive code. If temporary breakage is necessary, then
the maintainers must find a way to apply the changes with
reduced tools and extra care. Alternatively, some images
are destined to run under restricted conditions that make it
impractical to include a complete set of development tools,
or simply to access them: for instance, images running on
remote servers do not have an active graphical interface2. This
makes development, testing, and maintenance impractical or
even impossible.

Current solutions or workarounds are to work on a re-
named copy of the classes, or to remotely control a separate
image via remote objects. However, in the first case we only
delay the problem, because the complete impact of changes
cannot be assessed until the copied and modified classes are
merged back into the system. In the latter case, if a change
causes the remote image to crash, then it will be impossible
to assess the problem.

2 Remote display solutions like VNC do exist, but suffer from usability and
portability problems.

ObjectSpaces to the rescue We need a way to control the
impact of changes, by making sure the surgeon and patient are
different persons, i.e., by clearly separating and isolating the
development environment from the domain code, while still
giving the surgeon complete reflective access to the patient
system.

3. Objectspaces: Images in the Image
An ObjectSpace is a reification of a Smalltalk image. An
ObjectSpace encloses a self-contained, isolated subsystem
of a larger Smalltalk environment: objects can run and
communicate inside the ObjectSpace as if they were running
in a normal environment, but they cannot reference or interact
with objects outside the space. However, the ObjectSpace
and its contents can be interacted with from the enclosing
environment: the owner of an ObjectSpace can refer to objects
inside it, as well as inject new objects or messages into it.

ObjectSpaces can be loaded from and written to the image
format on disk. We can also create an ObjectSpace ex-nihilo,
then recreate a working Smalltalk environment inside it
by copying classes, instances, or a full namespace from
the surgeon Smalltalk environment. Processes run inside an
ObjectSpace just like in a full-fledged image3.

Once an ObjectSpace is created, tools in the surgeon
environment can control it and interact with it to:

• inspect existing objects, via mirrors [1],
• inject new objects into the patient ObjectSpace,
• inject messages to be received by patient objects, and

possibly debug their execution,
• handle exceptions raised but unhandled by patient code,
• save the ObjectSpace to an image file, to re-load it later

either as an ObjectSpace or as a standard image,

Implementing Self-Surgery Changing core classes of the
system is akin to a bootstrap process, meaning that the
changes could require the image to go through a non-working
state, and thus that the usual Smalltalk tools cannot apply
directly —the VM can only load working images. The only
way to do that is to generate an image from scratch, with the
changes applied, but this implies that the control is external to
the bootstrapped image. In practice, not all implementations
of Smalltalk are able to bootstrap an image from bare sources.
Moreover, generating an image from scratch means dealing
with the details of the memory representation of objects, and
ensuring that the generated image is consistent.

ObjectSpaces are a means to access the contents of an
image without running it, at the relatively high abstraction
level of reflective access to objects, but also by relying on
code inside the ObjectSpace when possible. To implement
self-surgery using ObjectSpaces, the original image clones
itself to an ObjectSpace —or saves a copy of itself to disk

3 Ideally, the surgeon controls the patient’s process scheduler, but this is not
implemented yet in our prototype.
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Figure 2. Self-surgery via a clone: 1) the image clones itself into an ObjectSpace; 2) original and clone assume the roles of
surgeon and patient; the surgeon modifies core objects in the patient, through the ObjectSpace meta-object; 3) once the patient
reaches the desired state, the surgeon activates it, then terminates; except for the changes, the patient awakes in the same state as
before the cloning.

and loads that image file into an ObjectSpace— as shown in
Figure 2. It can then assume the role of the surgeon and apply
any necessary changes to its inactive patient copy. During
the operation, application domain services can be paused, so
that their state is migrated according to the changes in the
patient. When the changes are applied, the patient can be
awaken by loading it into a new VM, taking the place of the
surgeon —i.e., taking ownership of any open files, sockets,
etc. needed by application domain code. To application code,
the operation appears as transparent as saving then re-loading
the image, and it resumes work in the same logical state as
before the operation. Of course, in a production setting, the
surgeon should assess that migrating services to the patient
is actually safe, e.g., by running tests. To the surgeon, the
only state created after the application services pause should
only pertain to applying the changes and migrating data;
the surgeon image can terminate itself safely, since it’s now
redundant with the patient.

4. ObjectSpaces at Work
In this section, we illustrate how to sandbox arbitrary code
execution using our ObjectSpace prototype. Consider a sim-
ple web site that allows its users to discover the Smalltalk
language by browsing the system and evaluating arbitrary ex-
pressions. Even ignoring security considerations like access
to the server filesystem, user-provided expressions should
be expected to break the environment they are evaluated in,
so users should be sandboxed from each other and from the
web framework. To do that, we create an ObjectSpace for
each user to evaluate his expressions. The ObjectSpace acts
as the user’s own disposable environment, but in contrast
to spawning a complete image on a separate VM, the web
framework can easily inspect the expression effects within its
environment.

The first step is to create a new ObjectSpace for each of
our users, Alice and Bob:

spaces at: #alice
put: (ObjectSpace with: Smalltalk).

spaces at: #bob
put: (ObjectSpace with: Smalltalk).

Here, ObjectSpace with: Smalltalk recreates a self-
contained environment inside a new ObjectSpace, based on
the Smalltalk namespace.

When the user enters an expression on the web page, the
framework injects it inside the ObjectSpace for evaluation:

(space at: #bob) eval:
'Array compile: ''do: [ self halt ]'' '.

The eval: message compiles the string within the Ob-
jectSpace’s environment and executes the resulting code.
Since the ObjectSpace environment runs in complete iso-
lation, this modifies Bob’s own copy of the class Array, and
only the instances in Bob’s ObjectSpace will be affected by
this change. Alice is not impacted because the Array class
inside her ObjectSpace is an independant copy that is not
even known inside Bob’s ObjectSpace; in fact, at this point,
only Bob’s code is broken.

Since Bob’s ObjectSpace is sleeping —the code was
changed, but not run yet— we can tell it to evaluate a block
that exercises the new behavior of Array » do::

| exc |
(space at: #bob)
do: [#(1 2 3) do: [:i | Transcript show: i]]
onException: [:e | exc := e ]

The message do:onException: injects the given block into
the ObjectSpace then evaluates it, returning a mirror to its
value or catching any exception it raises. Injecting a block is
just another way of interacting with code in an ObjectSpace.
However, whereas a string is a inert data and is simply copied,
a block contains references to objects which we need to pull
into the ObjectSpace as well. To inject a block, we thus copy
the block itself and its literals to the ObjectSpace, and also
translate any global reference the block contains to refer to
the patient environment —so here, Transcript will refer to
the one inside the ObjectSpace.

Of course, when #(1 2 3) receives #do:, the breakpoint
we set earlier raises an exception, which we store in the
variable exc. A specialized debugger then takes control of
the ObjectSpace execution like so:

(space at: #bob) debug: exc;
restart; step; step; ...



Finally we can reinstate a working version of the method:

(space at: #bob)
compileMethod: 'do: aBlock
1 to: self size do: aBlock'

for: #Array

5. Implementation
Our prototype implementation was realized in GNU Smalltalk.
While we expect a complete implementation to require VM
modifications for mirrors, controlling primitives, and perfor-
mance, the approach is generic to Smalltalk and does not
depend on features of a particular dialect.

5.1 Creating an ObjectSpace
To create an ObjectSpace, we clone classes and namespaces
(i.e., the Smalltalk system dictionary) to initialize a new
environment.The cloning operation of a class also creates
a new instance of the metaclass and makes a deep copy
of the class structure: instance variables, method dictionary,
compiled methods, method literals, and shared pool. We reset
values in the shared pool to nil, since we want all classes
to be in a clean state. This process is similar to the one of
saving a standard image, so eventually it should support ad-
hoc behavior on class shutdown and wake-up.

Since just copying a class will introduce pointers from
the patient copy to its origin surgeon environment, we have
to rebind the variables to point to their counterparts inside
the ObjectSpace. We also rebind the class pointers of copied
objects —like method literals— to point to their counterpart
class inside the ObjectSpace. Copying global variables is
not required unless they are referenced in a copied method;
such references are rebound to their ObjectSpace counterparts.
Once this is done the process of bootstrapping an ObjectSpace
is finished: no references to surgeon objects remain in the
patient.

5.2 Injecting Messages Into an Objectspace
Once the bootstrap is achieved, we obtain an ObjectSpace,
but at this time it is only a set of inactive classes. To activate
the patient ObjectSpace and communicate with its objects, the
surgeon can inject a message into it. Note that we use the term
inject instead of send, because from the patient perspective,
injected messages appear from nowhere: they have no sender
context, like Do-it requests.

anObjectSpace
send: #start to: #StartupClass

The ObjectSpace looks up #StartupClass in its envi-
ronment, then simply sends it the given message. To inject
messages with arguments, the arguments themselves have to
be copied to the ObjectSpace first, additionally to the mes-
sage selector. The surgeon obtains a mirror [1] to the result
of the message —or to any exception it throws.

ObjectMirror

object

of:
basicSize
at:
at: put:
class
instVarAt:
instVarAt: put:
isClass
isMetaclass

BehaviorMirror

>>
instanceSpec
instVarNames
subclasses
superclass

ClassMirror

name
environment
sharedPools

MetaclassMirror

instanceClass

Figure 3. Mirror class hierarchy.

5.3 The Case of Reflection
While ObjectSpaces should provide reflective access to their
contents, the classical reflective methods cannot be used by
the surgeon to reflect on patient objects, because they would
defeat the exact purpose of the ObjectSpace:

• First, even reflective methods must maintain the invariant
that the ObjectSpaces do not share references; this is
not the case with the existing reflective methods, and is
not realistic as it would require special-casing when the
method is used across an ObjectSpace border.

• Second, and most importantly, the surgeon code cannot
assume that patient system has the same meta-structure,
and neither can it rely on patient code for reflective access
—in the general case at least. Indeed, the patient’s reflective
methods could themselves be the subject under surgery.

Therefore, to support reflection, we implemented a mirror-
based architecture [1].

5.4 Mirrors
Using mirrors, we can refer to, inspect, and modify patient
objects, independently of their reflection implementation. In
practice, the ObjectSpace object itself behaves as a mirror
to the isolated patient environment, and instances of class
ObjectMirror provide basic reflective access to instances
inside an ObjectSpace, using VM primitives.

The mirror classes provide low-level reflective methods
corresponding to those in the original Smalltalk classes;
for instance, ObjectMirror provides access to instance



variables by index, to the class pointer, and to the size
of patient instances. Compared to normal reflective access,
mirrors do not rely on code in the patient environment; they
act as a proxy to the patient object they represent. For instance,
the method Object » #at: is normally implemented by a
primitive call <primtive: VMpr_Object_basicAt>, but
it could be redefined inside an ObjectSpace. The mirror
ensures that the implementation of #at: available to the
surgeon is independent of the patient state, and enforces that
references do not cross the ObjectSpace boundary without
going through their own mirror.

6. Related Work
The most related family of work is virtualization approaches
like Xen [2]. Virtualization makes it possible to run several
operating systems at once on a single physical machine. As
these approaches target full operating systems, they rely on
support from the hardware platform, and in some cases from
the guest OS; they also concentrate on performance and
production features, and consider the guest system mostly as
a black box. In contrast, ObjectSpaces provide full control
and reflective access to their contents.

Changeboxes [4] encapsulate and scope changes, allowing
several versions of a system to coexist in a single runtime
environment, effectively adapting version control from static
source code to running systems. Changeboxes scope code
changes, while ObjectSpaces scope generic object references;
also, Changeboxes do not directly address the problem of
applying changes to code that is critical to the runtime system
itself.

Scoping side-effects has been the focus of two recents
works. Worlds [14] provide a way to control and scope side-
effects in Javascript. Similar to ObjectSpaces, side-effects are
limited to a first-class environment. Tanter proposed a more
flexible scheme: contextual values [12] are scoped by a very
general context function.

One problem meta-circular architectures is that meta-
objects rely on the same code they reflect upon; therefore
there is a risk of infinite meta-recursion when the meta-level
instruments code that it relies upon. In [5], Denker et al
solve this problem by tracking the degree of metaness of the
execution context. Meta-objects can only reflect on objects
of a lower metaness, thus simulating the semantics of an
infinite tower of distinct meta-interpreters. The existing work
on Meta-context is only concerned with scoping behavioral
changes. More work is needed to extend this work to structure.
We plan to explore how ObjectSpaces can be used to provide
a way to control structural reflective change.

One possibility for implementing ObjectSpaces is to dif-
ferentiate messages depending on whether the sender and the
receiver are in the same space or not. Several works use a
similarly extended message lookup. Us [11] is a system based
on Self that supports subject-oriented programming [6]. Mes-
sage lookup depends not only on the receiver of a message,

but also on a second object, called the perspective. The per-
spective allows for layer activation. ContextL [3, 7] is a lan-
guage to support Context-Oriented Programming (COP). The
language provides a notion of layers, which package context-
dependent behavioural variations. In practice, the variations
consist of method definitions, mixins and before and after
specifications. Layers are dynamically enabled or disabled
based on the current execution context. ObjectSpaces provide
form a context. The relationship between context-oriented
programming, subjectivity and ObjectSpaces is an interesting
topic of future research.

Gemstone [10] provides the concept of class versions.
Classes are automatically versioned, but existing instances
keep the class (shape and behavior) of the original definition.
Instances can be migrated at any time. Gemstone provides
(database) transaction semantics, thus state can be rolled
back should the migration fail. Gemstone’s class versions
extend the usual Smalltalk class evolution mechanism for
robustness, large datasets, and domain-specific migration
policies. In contrast, ObjectSpaces target general reflective
access and bootstrap-like evolutions of code that is critical to
the environment.

In Java, new class definitions can be loaded using a class
loader [9]. Class loaders define namespaces, a class type is
defined by the name of the class and its class loader. Thus
the type system will prohibit references between namespaces
defined by two different loaders. Class loaders can be used
to load new versions of code and allow for these versions to
coexist at runtime, but they do not provide a first-class model
of change. Java also provides JPDA, a remote debugging
architecture that specifies a native interface on the debuggee
VM, and a matching API for the debugger front-end, running
in a separate VM. However, JDPA only supports introspection
features like inspection and monitoring, and very limited
intercession [8].

7. Discussion and Conclusion
We have presented ObjectSpaces, a reification of the Smalltalk
image as a first-class entity. The Smalltalk image is a pow-
erful tool, as it provides persistance without any overhead
and the possibility to transfer or restore running systems.
However, since an image embeds both the domain code and
the developer tools, it can become an obstacle to safe system
evolution. An ObjectSpace isolates the tools from the effects
of the changes they perform, while still providing them full
control and reflective access over the domain system. It thus
enables safe low-level changes in existing systems, or means
to bootstrap new systems in a practical way. While the idea is
still in its early stages, we think ObjectSpaces solve the main
problems with image-based development, while embracing
the perspective of evolving living systems.

However, ObjectSpaces are still an early idea that leaves
many possibilities open. Our current implementation has
some limitations. We cannot change the class of instances



of Integer, Symbol, BlockContext, MethodContext, or
Process because those objects have a special format that
encodes the class pointer, or are otherwise known by the VM
as they take part in the reflective causal connection with the
language.

In our current implementation, we have no control over
primitive methods. This means that a program can call a
primitive like nextObject which returns all the objects
in the image, and thus escape the ObjectSpace boundary.
As a solution, we plan to intercept primitive calls from the
patient, so that the surgeon can prevent or replace them by
other primitive calls or even Smalltalk methods. It would
be then possible to create ObjectSpaces where unwanted
primitives like file access or inspecting the whole object
memory (nextObject or become:) throw an exception to
the surgeon.

Finally, there is the question of allowing inter-objectspace
messages. If we allow them, we have to make sure that
references do not flow between communicating ObjectSpaces.
This requires to intercept inter-objectspace messages and to
inject all arguments into the space of the receiver, or to wrap
them in mirrors. A simpler alternative is to simply forbid inter-
space messages and rely on actor-like remote messaging —
possibly optimized to take advantage that both ObjectSpaces
run on top of the same VM.
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