Why Smalltalk Wins the Host Languages Shootout

Lukas Renggli and Tudor Girba

Software Composition Group, University of Bern, Switzerland
http://scg.unibe.ch/

Abstract

Integration of multiple languages into each other and into
an existing development environment is a difficult task. As
a consequence, developers often end up using only internal
DSLs that strictly rely on the constraints imposed by the host
language. Infrastructures do exist to mix languages, but they
often do it at the price of losing the development tools of
the host language. Instead of inventing a completely new
infrastructure, our solution is to integrate new languages
deeply into the existing host environment and reuse the
infrastructure offered by it. In this paper we show why
Smalltalk is the best practical choice for such a host language.

General Terms Design, Languages

Keywords Embedded Languages, Domain-Specific Lan-
guages, Programming Environments and Tools

1. Introduction

With the increasing demand to combine multiple languages
within a single project, different solutions have been pro-
posed to simplify the process of building and using polyglot
programming environments. While these solutions have their
strengths at various levels, they do not cover the complete
spectrum of integrating these languages and of offering de-
velopment tools for them.

We use the term host language to refer to the language that
is used as the basis for implementing new languages and for
gluing them together. Furthermore, we define context specific
languages as languages that are embedded in a host language,
but active only within certain well-defined contexts.

As a running example we use the Extended Backus-Naur
Form [Wirth 1977], as a simple language extension to an
existing host language. The possibility to use the EBNF
directly within the code of the host language raises the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $10.00

conciseness of a parser definition considerably. An example
grammar to parse numbers might look like this:

digit = "0" | "1" | ... | "9" ;

number = ["-"] digit { digit } ["." digit { digit }] ;

This language would have to coexist with the host and
possibly with other languages. This co-habitation should be
transparent in the sense that objects can be passed through
code written in multiple languages. Furthermore, ideally the
environment should provide development tools, like syntax
highlighting and debugging, that can be used uniformly
across languages.

In this paper we evaluate seven general purpose languages
(C++, C#, Java, Javascript, Lisp, Ruby, and Smalltalk) from
the point of view of the mechanisms they offer for language
integration. The shutout is performed as follows: we first
identify the requirements for a host environment, we distill
the features of a programming language that would support
these requirements and we compare the considered languages.
From our comparison, Smalltalk wins the shutout.

The paper is structured as follows: Section 2 details the re-
quirements for a host environment and compares with related
work. Section 3 gives a quick introduction to the HELVE-
TIA system. Our main contribution is presented in Section 4
where we discuss the advantages and disadvantages of using
Smalltalk as the host environment. Section 5 concludes the

paper.

2. Requirements for a host environment

We identify three major features that are generally needed to
support the embedding and combining of multiple languages
into a single host environment:

Multiple context specific languages. Different languages
and the host language should be mixable in arbitrary ways.
Language changes should not be limited to file bound-
aries, but should depend on the location in the source code
only. In the example of the EBNF language extension, we
would like to define the grammar close together with the
associated production actions that are specified using the
host language syntax.

Homogeneous language integration. It should be possible
to pass values from one language to another without
requiring a conversion in-between. Similar transparent

http://scg.unibe.ch/

interaction between the meta-level where a language is
defined and the base-level where a language is applied
should be possible. Homogeneous language integration
[Sheard 2001] enables all languages to be aware of each
other and make use of the common reflective facilities
of the host system to reason about themselves. In our
running example we would like to directly access and
use the grammar and the resulting tokens from the host
language.

Homogeneous tool integration. Language users demand
sophisticated tool support for the languages they are us-
ing. For example, they would like to step with a single
debugger through a method that mixes various languages.
To debug a grammar definition, we would like to be able
to step both through EBNF and through the production
actions using the debugger of the host environment.

The most basic approach is to derive a new pseudo-
language from an existing API. This technique is known
as a Fluent Interface, a form of an internal DSL. While
this approach fulfills all the above properties, it is often not
powerful enough as the language is constrained by the syntax
and the semantics of the host environment. For example,
instead of using the concise EBNF language constructs we
would need to express grammars using a verbose series of
message sends written in the host language.

Systems with meta-programming facilities like Scheme,
Converge [Tratt 2008] or MetaOCaml [Calcagno et al. 2003]
avoid that problem by providing compile time code genera-
tion, however they often lack sophisticated tool support.

Similarly, extensible compilers like JastAdd [Ekman and
Hedin 2007] or Xoc [Cox et al. 2008] allow language design-
ers to tweak the host language compiler, but usually don’t
provide a way to integrate the modified language into the ex-
isting tools. None of the systems offers tight IDE integration,
and the transformed code cannot be debugged at the source
level.

Language workbenches like JetBrain MPS [Dimitriev
2004] or Intentional Software [Simon et al. 2006] come with
a specialized IDE for language engineering. They provide a
special workflow to define new languages and they provide
tools for language development and application. The problem
with these approaches is that they do not build on top of
existing tools and host languages, but instead provide their
own custom toolset.

We implemented a host environment, HELVETIA, using a
different strategy. We chose a host environment and we ex-
tended the existing compiler and programming environment
to allow us to parameterize them for language extensions. To
support our approach the host environment needs to support
the following six features:

1. A minimal syntax makes a language a good source and
target for program transformation.

2. Dynamic semantics allows language designers to change
and extend the behavior of existing classes. Furthermore,
dynamic typing lets developers replace objects as long as
the replacement understands the expected messages.

3. Reflective facilities makes the structure and behavior of
a system observable and changeable. This is crucial for
tools as well as the language extensions themselves.

4. A homogeneous language is a language that is imple-
mented in itself, thus is specifically easy to extend and
change.

5. Homogeneous tools are tools that are written in the host
language itself. Again this makes them viable for change.

6. Being able to change a language on the fly makes the de-
velopment process faster and quick language experiments
feasible.

After careful consideration we chose Smalltalk as the host
language for HELVETIA. HELVETIA covers all above men-
tioned requirements and transparently blends into Smalltalk
and its development tools. While the abstract approach is not
limited to Smalltalk, the choice of Smalltalk did present sev-
eral practical benefits over other solutions. This paper distills
our experience and presents the arguments for why Smalltalk
is the best choice.

3. HELVETIA in a Nutshell

In this section we present HELVETIA' shortly. The goal of
this description is not necessarily to describe HELVETIA
completely, but rather to provide the necessary background
from a user perspective.

HELVETIA is an extensible framework that enables lan-
guage designers to cleanly extend compiler and development
tools of the standard Smalltalk IDE. As depicted in Figure 1,
our approach reuses the existing tool-chain of editor, parser,
compiler and debugger by leveraging the abstract syntax tree
(AST) of the host environment. Different languages cleanly
blend into each other and into existing code. The same tools
can be reused with different language extensions.

The HELVETIA framework is lightweight in the sense that
it is implemented in less than 900 lines of code. HELVETIA
makes heavy use of libraries that are part of the Smalltalk
system:

* The Refactoring Engine [Roberts et al. 1996] is central to
any Smalltalk system. HELVETIA mostly makes use of its
rewrite engine to declarative specify transformations of
the abstract syntax tree (AST).

* The New Compiler is an extensible compiler built on top
of the AST of the refactoring engine. It transforms ASTs
to bytecodes that can be directly executed by the virtual
machine (VM).

I'The implementation along with its source code and examples can be
downloaded from http://scg.unibe.ch/research/helvetia.

http://scg.unibe.ch/research/helvetia

1
| ____ <<extends>>
______________ > Editor
i AN NRYY
Helvetia .. %,
3 R
VA % o
A AN o i
: 4 NS A Compiler
12 AN
| e \\%4
PV b
N
N
\\\ —
N
N
Language N
Extensions peueet

Figure 1. The HELVETIA System.

* SmaCC [Brant and Roberts] is an LALR based parser gen-
erator framework used for example by the New Compiler
to parse Smalltalk source code. PetitParser is a lightweight
alternative based on parsing expression grammars (PEG).

(S18]8] Code Browser (=)
LanguageAspe(ts—Gran: FloatParser ——all -- digit
LanguageAspects-Test: grammar number

LanguageAspects-Test!
LanguageAspects-Test:
EBNF-Parser

EBNF-Number

T ——

(sequence)
I {choice)
C (grouping)
(& (option)
i (repetition)
(terminal)
digit (nonterminal)
number (nonterminal)
ctrl-h=help | -> open detail

Figure 2. The Smalltalk browser opened on the EBNF lan-
guage with adapted syntax highlighting and auto completion.

Furthermore, HELVETIA uses and extends tools:

* The OmniBrowser framework is a toolkit to build extensi-
ble development tools, see Figure 2. HELVETIA extends
the standard code browsers and debuggers with custom
functionality, such as contextual language specific menu
actions.

* Shout and eCompletion are the standard plugins for syntax
highlighting and auto completion. We extended these tools
to be able to use them on arbitrary languages.

Figure 3 shows how we step through a custom language
to define grammars using the traditional Smalltalk debugger.
The debugger displays the original source-code and properly
highlights the current execution location, even though the
code has been transformed to a standard Smalltalk AST
to get into an executable state. Language specific syntax
highlighting is provided as in any other editor.

(3]18]8)] Debugger (=)
FloatParser>>number
[] in FloatParser class(EBNFFloatParser0 class)>>debug
[1 in BlockContext> >newProcess

(thisContext) | FloatParsers>numb a FlootParser

er

80

Figure 3. Stepping through a mixture of EBNF and the host
language using the standard debugger.

4. Why Smalltalk

In this section we present the case for why Smalltalk is
an optimal solution as host environment in comparison to
other programming languages. Table 1 provides a summary
of the features supported by the considered programming
languages: a filled circle denotes that the language supports
fully the given feature, while a half-filled circle means that the
feature is only partially supported or that it requires additional
workarounds to access it. Each of the features is presented in
detail in the following subsections.

4.1 Minimal Syntax

Smalltalk has a minimal syntax?, and Smalltalk compilers
rarely have more than ten different node types to support the
full language. Depending on the implementation details, the
following node types are supported:

1. A method node is used to describe the method signature
and method body.

2. A sequence node is used to describe a sequence of state-
ments and a preceding declaration of temporary variables.

3. A message send node is used to describe a method invoca-
tion on a receiver with a given set of arguments.

4. A cascade node describes a series of message sends to the
same receiver.

5. A block node describes a block closure and its arguments.

6. A return node is used to describe a return from a method
or block.

7. A variable node describes a temporary, instance or global
variable reference.

8. An assignment node describes a variable assignment.

9. A literal node describes literal values, such as numbers,
characters, strings, symbols or boolean values.

2 Jokingly it is often remarked that a description of the syntax would fit on a
business card.

4.1 Minimal Syntax

4.2 Dynamic Semantics

4.3 Reflective Facilities

4.4 Homogeneous Languages
4.5 Homogeneous Tools

4.6 On-the-fly Programming

OO0 O®O O |C++

OO0OO0O®® O | CH#
O®O®OO | Java
& & O®@ O | Javascript
>0 000 Lisp
®&OO®e® O |Ruby
®© 000 0 ¢ Smiltalk

Table 1. Comparison of different main-stream programming languages and their suitability for language engineering. Legend:

O no support, © partial support, @ full support.

The rest of the language features come from the Smalltalk
library. Contrary to most other programming languages,
control structures are modelled using message sends and
block closures, thus the compiler does not require specific
node types to handle these.

The simplicity of Smalltalk makes it a very attractive target
for language transformation both from arbitrary languages
to Smalltalk or within the Smalltalk language itself. In the
first case a parser can directly build a Smalltalk AST, in
simple cases just consisting of a series of message sends.
Transformations within the language only need to match a
few basic cases to cover the complete language specification.

In the example of the EBNF language we transform the
input into a series of message sends that construct an object
model of the grammar. The example grammar presented in
Section 1 is transformed to the AST of the following two
Smalltalk methods:

digit
~ $0 asParser to: $9 asParser
number
" $- asParser optional , self digit plus ,
self digit plus) optional

($. asParser ,

The only contenders in this area are Lisp-like languages.
This family of programming languages provides s-expres-
sions (parenthesized lists) as their central language construct.
This means that source code is written in an extremely
uniform way that is directly related to the abstract syntax
tree. As such Lisp is very well suited for macro programming.
On the other hand, the syntax of Smalltalk is close to natural
language, and thus targeted at readability while still being
simple enough for transformations.

4.2 Dynamic Semantics

Smalltalk is built around objects, polymorphism and dynamic
dispatch. This together with the fact that everything is a
message send is an advantage when it comes to changing
the semantics. For example, to change the default lower index
of arrays of 1 to something else, is simply a matter of creating

a custom subclass of Array and overriding the methods at: to
read and at:put: to write an array cell.

In the example of the EBNF language we extended the
classes of common Smalltalk objects with the message
asParser, SO that these objects can be converted to a parsers
that accept themselves. This is used in the transformed code
to construct a parser for a character. $0 asParser returns a
parser that parses the character o, see the listing in Section 4.1.

However even though it is advertised that everything in
Smalltalk is a message send, this is not entirely true. For
example, reading from and writing to temporary, instance and
global variables is not performed using a message send, but
through primitive bytecodes.

Bracha et al. [Bracha 2007] have demonstrated with
NewSpeak that we can build a Smalltalk-like system that
accesses state through message sends only. This presents the
advantage that state access can be overridden and intercepted
as it is currently done with method polymorphism. Intercept-
ing state changes is useful to automatically notify observers
that are interested in how a particular object changes.

Most programming languages today provide static built-in
types that have fixed semantics and that cannot be changed.
Furthermore, it is often not possible to extend the existing
system or library classes with new code (e.g., Java). C#
provides an extension mechanism through partial classes,
however this mechanism does not allow us to extend existing
tools as the partial class and its extensions must reside in the
same module. In dynamic languages like Ruby and Javascript
it is typically possible to extend existing classes with new
methods like Smalltalk does.

4.3 Reflective Facilities

The HELVETIA system heavily depends on the reflective fea-
tures of the host language. We use the reflective infrastructure
to scope language extensions to classes, class hierarchies,
packages, etc. The EBNF language extension if for example
scoped to the subclasses of a generic parser class.
Furthermore the transformation of the parse trees are
performed using the rewrite tools of the Smalltalk refactoring

engine. Instead of relying on string transformations or code
generation, we transform the language extension AST into
the Smalltalk AST and we directly pass it to the compiler.
This approach allows us to keep accurate source location
information, which is crucial to facilitate contextual error
reporting and highlighting in the debugger.

However, while Smalltalk has an excellent infrastructure
for reflection, it lacks features that are central to meta-
programming. Traditionally new code fragments are specified
using strings and string concatenation. This leads to fragile
code and makes it difficult to debug, as the origin of the code
cannot be tracked. A slightly better solution is to manually
instantiate and compose the AST nodes. In this case the origin
can be tracked, but the code is still hard to read and debug.

Quasiquoting facilities known from Lisp [Bawden 1999]
or OMetaCaml’s staging constructs [Taha 2003] promise
rescue. We extended the Smalltalk language with an expres-
sive quasiquoting infrastructure. We introduce the following
operators, that can be used as a prefix for any Smalltalk ex-
pression:

* Quasiquote. An expression prefixed with -~ is delayed
in execution and represents the AST of the enclosed
expression at runtime.

* Unquote. An expression prefixed with -, can be used
within a quasiquoted expression. It is executed when the
AST is built can be used to combine smaller quasiquoted
values to larger ones.

* Splice. An expression prefixed with e is evaluated at
compile-time and the result is spliced-into the code. If
the returned expression is not an AST, it is automatically
lifted to the AST level, e.g., by introducing a literal node.

As an example we use these operators to generate code to
calculate ", where n is a positive integer. The method below
is a recursive definition of this method written in regular
Smalltalk:

raise: x to: n
“n=1
ifTrue: [x]
ifFalse: [(self raise: x to: n - 1) * x]

If we want to avoid the recursion at runtime and instead
generate code that directly calculates the result for a given
integer n we annotate the code with quasiquote and unquote
operators:
raise: aNode to: n

“n=1

ifTrue: [aNode]
ifFalse: [~~(,(self raise: aNode to: n - 1) * ~,aNode)]

When evaluating self raise: ~“x to: 3 with a variable
node “"x, a parse tree is constructed that multiplies the
variable x three times with itself yielding x * x * x. Using
the splice operator we can insert the generated parse tree
anywhere into the source code. For example:

qubic: x
~ "@(self raise: x to: 3)

This creates code equivalent to:

qubic: x
X kX *x X

In our running example, the quasiquoting facilities simpli-
fies the code transformation from the EBNF to the host lan-
guage. The three examples below show different approaches
to generate a small part of the code we saw in action in
Figure 3. Specifically we show how the repeat statement is
composed:

1. String Concatenation. The most trivial way to do this
is to (1) print out the inner node, (2) concatenate it with
the repeat message that is part of the API of the language
grammar model and returns a repeat clause, and (3) then re-
parse the complete string. Code like this is hard to debug and
with pretty printing and parsing origin information is lost.
Furthermore, repeatedly parsing and pretty printing code is
also very inefficient.

Parser parseExpression: '(' , aNode prettyPrinted , ') repeat'

2. Manual AST Composition. Another possibility consists
to manually construct the AST. In this case the node is com-
posed with the repeat message. This approach works reason-
ably well, but it gets cumbersome with more complicated
examples. The compiler cannot check up front if the resulting
code is valid and it is not immediately obvious for developers
to see what code gets generated.

RBMessageNode receiver: aNode selector: #repeat

3. Quasiquoting. Using the introduced quasiquoting facili-
ties code is easily generated. Furthermore, it is immediately
visible what kind of code is generated and the compiler can
validate the code generation in advance.

“7 (" ,aNode repeat)

The presented quasiquoting language extension to Small-
talk is simple and does not conflict with the existing syntax.
We strongly encourage the Smalltalk ANSI committee to
include quasiquoting in a future standard proposal. The fact
that Smalltalk entirely lacks sophisticated facilities for meta-
programming could be fixed by implementing quasiquoting
as a language extension.

Unfortunately only very few mainstream programming
languages (e.g., Javascript) provide rich structural and compu-
tational reflection. Furthermore, even fewer provide support
that goes beyond basic structural reflection at the level of
classes or methods. C# 3.0 provides only partial access to the
AST of statically declared expressions using expression trees.
Only in Lisp and Smalltalk we do have direct access to the
AST. Although HELVETIA does not strictly require reflective

facilities to change the running application, having read-write
access to the AST greatly simplified its implementation.

For a detailled comparison of the reflective features in
different programming languages we refer the reader to the
work of Bracha et al. [Bracha and Ungar 2004].

4.4 Homogeneous Languages

Smalltalk being implemented in itself, makes it a viable target
for language experiments. Although Smalltalk does not come
with a fully extensible compiler, this can be easily added
by introducing hook methods into the standard compiler
framework that is itself implemented in Smalltalk. We have
done so as described in Section 3.

In Smalltalk classes can define a custom parser and com-
piler by overriding the method compilerClass. HELVETIA
does so by overriding this method in Object, the root of the
class hierarchy. This enables HELVETIA to return a more so-
phisticated facade object that scopes language changes even
further, not only at the level of classes, but also at the level
of methods and at the sub-method level [Denker et al. 2007].
As the parser, the compiler and the executable bytecode are
fully accessible using the reflective environment, any part of
the system can be customized, extended or even replaced.

Furthermore, since all executable code eventually ends
up in a compiled method object that the VM knows how to
interpret, any code can be invoked without knowing its origin.
As the object model is the one of the host system, objects can
be transparently passed around and used by different language
extensions. Thus, different languages can live homogeneously
next to each other and interact in a natural and transparent
way.

For example, our EBNF language would just return a
series of parse tokens by default. To attach production actions
to the grammar we need to be able to intermix the EBNF with
normal Smalltalk code. In the excerpt below we show that we
can use normal Smalltalk code to define a production action
right after the grammar specification. In this case aToken
implicitly refers to the character consumed. We use normal
Smalltalk code to convert this character into a number:

digit = "0" | "1" | ... | "9" ;
aToken asciiValue - $0 asciiValue

Language extensions are scoped to certain parts of the
system (e.g., specific classes or packages). When using the
reflective facilities of the host system, different languages are
aware of each other and can be closely integrated.

None of today’s popular programming languages provide
out of the box support for the use of different parsers and
compilers. Thus people have to use a source-to-source trans-
formation in a pre-compilation phase, or rely on a custom
compiler. This leads to various problems: (1) the interaction
between different languages is difficult, (2) incompatibilities
exist between the custom AST representations and the do-
main models involved, and (3) it is often not possible to trace
easily the transformed code back to the original source.

Another language besides Smalltalk that provides homo-
geneous language is Lisp. In Lisp, reader macros are used to
read and transform the source code to s-expressions. Com-
mon Lisp comes with a set of reader macros that define the
standard language, and custom ones can be added by devel-
opers to extend and change the syntax of the host language.
The system knows about all the active reader macros and uses
s-expressions as the common representation of data.

4.5 Homogeneous Tools

Arguments similar to those given in the previous section can
also be given in relation to tools integration. All Smalltalk
development tools are implemented themselves in Smalltalk
and can be modified on the fly. This makes it easy for building
and integrating languages into these tools. Since the tools rely
on the reflection facilities, many parts of the editors can be
changed just by providing different answers to their queries.
For example:

* Syntax highlighting (see Figure 2) is typically imple-
mented by traversing the parse tree of the edited method.
As long as this tree can be properly visited by the syn-
tax highlighter, the code editors do not care about the
language that is being edited. The only information a
language extension needs to provide is some color and
style information so that the parse tree tokens can be high-
lighted accordingly.

* Code completion (see Figure 2) typically works on the
parse tree. Language extensions are able to provide possi-
ble completion tokens that are presented to the developer.

* Code debugging (see Figure 3) works at the bytecode
level. To highlight the current execution position in the
source code, the debugger uses a source map provided by
the compiler that encodes text ranges to bytecodes. By
providing a custom source map, it is possible to accurately
step through a mixture of different languages with a single
debugger. The debugger interprets the bytecodes and uses
the source map regardless of how the language looks like
to the developers.

Eclipse, NetBeans and IntelliJ IDEA are full featured Java
IDEs implemented in Java. As such, these IDEs provide ho-
mogeneous tools that can be extended through an expressive
plugin architecture. However, developers are restricted to
the provided interface and are often required to restart the
complete IDE when a plugin changes. LispWorks is an IDE
for Lisp development resembling Smalltalk IDEs. While it
provides a rich API to extend its tools, the source code is not
available and thus the developer is restricted to the provided
extension points.

Having the live source code of all tools at hand is a big
advantage for efficient language development and integration.
In Smalltalk the compiler, editor, debugger, etc. can be
changed, adapted or extended without limiting the developer
to a plugin architecture imposed by the vendor.

4.6 On-the-fly Programming

The image encapsulates the running Smalltalk system. It
includes all objects, all classes and their source code, and
the currently executed threads. An image can be saved to
the file-system at any time and in any state, and re-run on a
different machine. When working in a Smalltalk system, code
is compiled and installed into the running system. The typical
edit-compile-run cycle is avoided, as soon as the source code
is edited, it is automatically compiled and used by the running
system.

Having an ever running system makes it viable to quickly
develop and test new language features in the context of a
domain. The language change is immediately available and
can be tested in the running system using the objects already
present.

When a language definition changes, it is often required
that the users of this language are recompiled. In a reflec-
tive system like Smalltalk the clients of a language can be
enumerated and asked to recompile themselves. This is a
similar query to the functionality of displaying senders and
implementors of a particular method selector.

While many dynamic languages (e.g., Lisp, Ruby, Java-
script) provide similar functionality through their interactive
consoles, they do not take it as far as Smalltalk does. For
example, it is often not possible to fix a bug from within the
debugger, or to change the way the console works while it
is running. The fact that source code primarily lives in files,
makes it hard to interact with the code using a first-class
representation.

Smalltalk being an ever living object space presents also
presents practical disadvantages, as it makes it difficult to
make changes in certain parts of the system, e.g., changing
the compiler while it is being used to compile its own source
code. To circumvent these types of problems, in practice
we always keep the original compiler around so that it can
replace the default compiler in case something goes wrong.

Another related problem is the fact that language exten-
sions need to be available before any of the client code is
loaded. This enforces that language extensions are packaged
and loaded separately beforehand.

5. Conclusion

Context specific languages are languages that are embedded
in a host language, but active only within certain well-defined
contexts. Embedding such new languages into an existing
host environment is currently not well supported. Instead, to
accommodate them we need to extend an existing language
with a proper environment.

We built such an environment by expressing foreign
languages in terms of the AST of the host language. This
is the shortest path to reusing the host language tools, as
they all work on the standard reflective facilities of the host
language’s code model.

The contribution of this paper is to distill our experience
of using Smalltalk as the host language. We considered
multiple language environments from the point of view of
their suitability as possible hosts. In essence, we argue that
Smalltalk is a prime candidate for a system like HELVETIA.
Other languages considered (as seen in Table 1) fall short
from various points of view. Lisp is a strong contender,
however it lacks support of having full access to compiler
and tools in the running system.

While Smalltalk is a good practical solution, it still is
not ideal. To easily specify code transformation we had to
extend the language with a quasiquoting mechanism. Another
problem is that Smalltalk does not give us access to the
execution semantics of the VM. Accommodating a language
that is not message-based (e.g., Prolog or Haskell) is difficult
and requires mapping the semantics of the new language
[Wuyts 2001] to the message-based one of the Smalltalk VM.

Acknowledgments

We thank Oscar Nierstrasz for his feedback on earlier drafts
of this paper. We gratefully acknowledge the financial sup-
port of the Swiss National Science Foundation for the project
“Bringing Models Closer to Code” (SNF Project No. 200020-
121594, Oct. 2008 — Sept. 2010). We also thank CHOOSE,
the special interest group for Object-Oriented Systems and
Environments of the Swiss Informatics Society, for its finan-
cial contribution to the presentation of this paper.

References

Alan Bawden. Quasiquotation in Lisp. In Partial Evaluation
and Semantic-Based Program Manipulation, pages 4—12, 1999.
URL http://repository.readscheme.org/ftp/papers/pepm99/
bawden.pdf.

Gilad Bracha. Executable grammars in Newspeak. Electron.
Notes Theor. Comput. Sci., 193:3-18, 2007. ISSN 1571-0661.
doi: 10.1016/j.entcs.2007.10.004. URL http://bracha.org/
executableGrammars.pdf.

Gilad Bracha and David Ungar. Mirrors: design principles for meta-
level facilities of object-oriented programming languages. In Pro-
ceedings of the International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’04),
ACM SIGPLAN Notices, pages 331-344, New York, NY, USA,
2004. ACM Press. URL http://bracha.org/mirrors.pdf.

John Brant and Don Roberts. SmaCC, a Smalltalk Compiler-
Compiler. URL http://www.refactory.com/Software/
SmaCC/. http://www.refactory.com/Software/SmaCC/.

Cristiano Calcagno, Walid Taha, Liwen Huang, and Xavier Leroy.
Implementing multi-stage languages using ASTs, GenSym, and
Reflection. In In Krzysztof Czarnecki, Frank Pfenning, and Yannis
Smaragdakis, editors, Generative Programming and Component
Engineering (GPCE), Lecture Notes in Computer Science, pages
57-76. Springer-Verlag, 2003.

Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and
Eddie Kohler. Xoc, an extension-oriented compiler for systems

http://repository.readscheme.org/ftp/papers/pepm99/bawden.pdf
http://repository.readscheme.org/ftp/papers/pepm99/bawden.pdf
http://bracha.org/executableGrammars.pdf
http://bracha.org/executableGrammars.pdf
http://bracha.org/mirrors.pdf
http://www.refactory.com/Software/SmaCC/
http://www.refactory.com/Software/SmaCC/

programming. SIGARCH Comput. Archit. News, 36(1):244-254,
2008. ISSN 0163-5964. doi: 10.1145/1353534.1346312.

Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe
Marschall. Sub-method reflection. In Journal of Ob-
ject Technology, Special Issue. Proceedings of TOOLS Eu-
rope 2007, volume 6/9, pages 231-251. ETH, October 2007.
URL http://www.jot.fm /issues/issue_2007_10/paperl4http:
//www_jot.fm /issues/issue_2007_10/paperl4.pdf.

Sergey Dimitriev. Language oriented programming: The next pro-
gramming paradigm. onBoard Online Magazine, 1(1), November
2004. URL http://www.onboard.jetbrains.com /isl/articles/
04/10/lop/.

Torbjorn Ekman and Gorel Hedin. The JastAdd extensible Java
compiler. In Richard P. Gabriel, David F. Bacon, Cristina Videira
Lopes, and Guy L. Steele Jr., editors, OOPSLA ’07: Proceed-
ings of the 22nd annual ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications,
pages 1-18, New York, NY, USA, 2007. ACM Press. ISBN
978-1-59593-786-5. doi: 10.1145/1297027.1297029.

Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke.
An automated refactoring tool. In Proceedings of ICAST ’96,
Chicago, IL, April 1996.

Tim Sheard. Accomplishments and research challenges in meta-
programming. In SAIG 2001: Proceedings of the Second Inter-

national Workshop on Semantics, Applications, and Implemen-
tation of Program Generation, pages 2—44, London, UK, 2001.
Springer-Verlag. ISBN 3-540-42558-6.

Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and
Derek White. Java on the bare metal of wireless sensor devices:
the squawk java virtual machine. In VEE ’06: Proceedings of the
2nd international conference on Virtual execution environments,
pages 78-88, New York, NY, USA, 2006. ACM Press. ISBN
1-59593-332-6. doi: 10.1145/1134760.1134773.

Walid Taha. A gentle introduction to multi-stage programming. In
Domain-Specific Program Generation, pages 30-50, 2003.

Laurence Tratt. Domain specific language implementation via
compile-time meta-programming. ACM TOPLAS, 30(6):1-40,
2008. ISSN 0164-0925. doi: 10.1145/1391956.1391958.
URL http://tratt.net/laurie/research /publications/papers/
tratt__domain_specific_language_implementation _via_
compile_time_meta_programming.pdf.

Niklaus Wirth. What can we do about the unnecessary diversity
of notation for syntactic definitions? Commun. ACM, 20(11):
822-823, 1977. ISSN 0001-0782. doi: 10.1145/359863.359883.

Roel Wuyts. A Logic Meta-Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation.
PhD thesis, Vrije Universiteit Brussel, 2001. URL http://scg.
unibe.ch/archive/phd /Wuyts-phd.pdf.

http://www.jot.fm/issues/issue_2007_10/paper14 http://www.jot.fm/issues/issue_2007_10/paper14.pdf
http://www.jot.fm/issues/issue_2007_10/paper14 http://www.jot.fm/issues/issue_2007_10/paper14.pdf
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/
http://tratt.net/laurie/research/publications/papers/tratt__domain_specific_language_implementation_via_compile_time_meta_programming.pdf
http://tratt.net/laurie/research/publications/papers/tratt__domain_specific_language_implementation_via_compile_time_meta_programming.pdf
http://tratt.net/laurie/research/publications/papers/tratt__domain_specific_language_implementation_via_compile_time_meta_programming.pdf
http://scg.unibe.ch/archive/phd/Wuyts-phd.pdf
http://scg.unibe.ch/archive/phd/Wuyts-phd.pdf

	Introduction
	Requirements for a host environment
	Helvetia in a Nutshell
	Why Smalltalk
	Minimal Syntax
	Dynamic Semantics
	Reflective Facilities
	Homogeneous Languages
	Homogeneous Tools
	On-the-fly Programming

	Conclusion

