
Newspeak:
Evolving Smalltalk for
the Age of the Net

Gilad Bracha
Distinguished Engineer

Cadence Design Systems

Genealogy of Newspeak

Smalltalk

Newspeak

Self Beta

Scala

Goals and Principles

Goals

Modularity

Security

Interoperability

Design Principle: Message based
Programming

Message-based
Programming

Smalltalk should have been message-oriented
- Alan Kay

Every run time operation is a message
send.

Message-based
Programming

In Smalltalk

 t := Array new: n.

 ^t

In Smalltalk

 t := Array new: n.

 ^t

In Smalltalk

 t := Array new: n.

 ^t

assignment

In Smalltalk

 t := Array new: n.

 ^t

Globalassignment

In Smalltalk

 t := Array new: n.

 ^t

Global

temp/arg

assignment

In Smalltalk

 t := Array new: n.

 ^t

Global

inst var

temp/arg

assignment

In Smalltalk, using
messages

self t: (self Array new: (self n)).

^self t

In Smalltalk, using
messages

self t: (self Array new: (self n)).

^self t

Implicit receivers

t: (Array new: n).

^t

In Newspeak

t:: Array new: n.

^t

In Smalltalk, using
messages

self t: (self Array new: (self n)).

^self t

In Smalltalk

 t := Array new: n.

 ^t

inst var

Representation
Independence

No code depends on our choice of
storage representation

Clients never depended on it in Smalltalk

Now subclasses don’t depend on it either

Even the class itself doesn’t

In Smalltalk

 t := Array new: n.

 ^t

Global

No Static

No globals, no class variables, no pool
variables of any kind; no class instance
variables

Good for

Distribution

Re-entrancy

Testing

Startup

Memory management

Security

No Static

Goals

Modularity

Security

Interoperability

Object-capability model (Miller06)

Object reachability defines authority

No static state

No Ambient Authority

Objects as Capabilities

Object-capability model (Miller06)

Object reachability defines authority

No static state

No Ambient Authority

Access control

Objects as Capabilities

Access Control

In Smalltalk, the only means of data hiding
are instance variables & blocks

Messages are always public

If everything is a message send, everything is
public

 Public, protected and private messages

Mirror based Reflection

Mirrors act as capabilities for reflection

Availability of reflection can be controlled

For security

For deployment

Where does the state go?

No Static State

No Static State

How do different objects
conveniently share state?

No Static State

How do different objects
conveniently share state?

Via shared lexical scope

Nested Classes

 Nested as in Beta, not as in
Java

 Great for Modeling

 Natural Modularity Solution

Goals

Modularity

Security

Interoperability

No References to Classes

 Always use accessors

 Classes are first class objects

 Classes are always virtual

 Classes are always mixins

 Class hierarchy inheritance

External Dependencies
are Explicit

 Module definition = Class not nested within
another class

 No access to surrounding namespace

 All names locally declared or inherited

Modules are Sandboxes

 Factory method parameters are objects/
capabilities that determine per-module sandbox

Side by Side

Module definitions are instantiated into
stateful objects known as modules

Easy to create multiple instances, with
different parameters

Modules are Re-entrant

Module definitions are deeply immutable

Modules cannot step on each other’s state

Multiple Implementations

Modules are objects, accessed via their
protocol

Different implementations can co-exist

Module definitions are objects

Instantiate module in deeply immutable
object literal’s main: method

Deployment amounts to object
serialization

Start up app by deserializing and invoking
main:

Deployment

Goals

Modularity

Security

Interoperability

Smalltalk has Primitive
Features

Alberto Salguero

primFree: address

<primitive: 'primFree'

error: errorCode

module: 'IA32ABI'>

 ^self primitiveFailed

Smalltalk has Primitive
Features

Alberto Salguero

primFree: address

<primitive: 'primFree'

error: errorCode

module: 'IA32ABI'>

 ^self primitiveFailed

Smalltalk has Primitive
Features

primFree: address

<primitive: 'primFree'

error: errorCode

module: 'IA32ABI'>

 ^self primitiveFailed

Are you proud when
you explain this to a

non-Smalltalker?

Smalltalk has Primitive
Features

primFree: address

<primitive: 'primFree'

error: errorCode

module: 'IA32ABI'>

 ^self primitiveFailed

What object is
the receiver?

Nothing Primitive about
Newspeak

There is no “primitive” construct in
Newspeak - contradicts message-based
philosophy

Instead, you send a message to the VM, as
reified via a VM mirror

VM mirror behavior should be
standardized

Primitives & Foreign calls

In many languages, primitives are just
foreign calls

These notions are distinct

Primitives do not need to worry about
marshaling

Assumption that VM is in another language is
inappropriate

Primitives & Foreign calls

In most Smalltalks, foreign calls are
variations of primitives

They therefore inherit

Ugliness

Lack of portability

Often an afterthought

Aliens

In Newspeak, calling out is achieved by
sending messages to alien objects

You can send blocks as arguments to
implement call backs

Different alien libraries can support
different languages

Portable Native GUI

The Age of the Net
Cloud Computing

The Age of the Net
Cloud Computing

The Age of the Net

 Cloud Computing

Software delivery and maintenance over
the net

Javascript is the assembly language of the
internet, browser is the OS

The Age of the Net
Back to 1970s timesharing or 1990 X-
terminals?

System software has to be local

UI issues

Depend on Reliable, Fast, Cheap Network

Make you “reboot” - it’s called: session
expired

Web Apps have Downsides

Combine advantages of web services and
traditional client applications

Always Available (even w/o network)

Always Up to date

Run locally, think globally

Restart-free

Network Serviced
Applications

 Maintains software and data on server

Provides backup, audit trail, software
distribution & maintenance

 Software distributed and updated when
client syncs with server

 Client can run offline using locally cached
software and data

Sync does not imply application restart

Network Software Service

 Hotswapping: Running applications can be
updated on-the-fly over the network

 Modules: well defined units of deployment
and update

 Security: Object capability model

 Orthogonal Synchronization: Natural
update of program and data*

Platform Support for Network
Serviced Applications

Work in Progress

Expect some tweaks to syntax and
semantics

Implementation still incomplete -
especially libraries

 Working toward public release

to be open sourced under Apache 2.0 license

Status

 Libraries

 System issues: Linux & Mac Native GUI,
FFI refinements

 Concurrency: value types, actors

 Orthogonal synchronization

 Object literals, Metadata, Access control,
Pluggable Types

Future Work

Message-based programming

Component style modularity

Virtual classes, mixins, class hierarchy
inheritance

Object capability model and security

Synergy

Mirror based reflection

Actor style concurrency

Pluggable types

Synergy

Credits

Peter Ahe

Vassili Bykov

Yaron Kashai

Eliot Miranda (emeritus)

This file is licensed under the Creative Commons
Attribution ShareAlike 3.0 License. In short: you are
free to share and make derivative works of the file
under the conditions that you appropriately attribute
it, and that you distribute it only under a license
identical to this one. Official license.

The original Australopithecus skull image on slides
38/39 is the work of Albert Salguero and was
licensed under a very similar license (version 2.5 of
this license).

The Newspeak eye used in the bullets, slide
background etc. was designed by Victoria Bracha
and is used by permission.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

