Starting fresh every morning

[Uesuig

Building a new
development image every
morning

[$> whoami

[What We Are Talking About

[What We Aren’t Talking About

[Introducing the Beast

Kapital has been actively developed since
1995

Kapital has more than 22000 classes
(VW with ENVY has 2200)

Kapital is more than 70 developers pushing
changes everyday!

Every development cycle we change 5000
classes

Each day, we change from 60 to 150 classes

[Why Change My Image ?

Resynchronizing the code base with the other
developers

Avoiding important splits from the main branch
Checking prerequesites
Avoiding unknown dependencies

[Why Change My Image ?

Resynchronizing the code base with the other
developers

Resynchronizing the Code
[Base

The sooner you merge, the better
Everyday, 60 to 150 classes are changed

Everyday, 25 change sets are applied

© Average size of a change set = 5-8 classes

O 255 =125

o 25*8 =200

Avoiding multiple implementations for a single
piece of functionality

[Why Change My Image ?

Avoiding important splits from the main branch

[Avoiding Important Splits

Decompose code changes into smaller, more
manageable steps

[Why Change My Image ?

Checking prerequesites

[Checking Prerequisites

Always make ENVY happy ©

[Why Change My Image ?

Avoiding unknown dependencies

Avoiding Unknown
[Dependencies

#{MyClassOrGlobalVariable}
ifDefinedDo: [:thing | thing doStuff].
THIS IS NOT GOOD !!!

[How We do it in Kapital

Loading the top level map
Validating the build

A fresh image every time
Dangers of savedowns

[Introducing ENVY/Developer

Applications and configuration maps

Granularity = methods (class,
application, config map)

Great flexibility (ENVY boy talking ©)

[How We do it in Kapital

Loading the top level map

[Loading the Top Level Map

Kapital benefits from base ENVY
functionality

BEWARE! ENVY is known to bite
developers!

[How we do it in Kapital

Validating the build

[Validating the buila

Two types of testing systems

© Code driven = specific code items (SUnit
style)

© Data driven = end-to-end testing
(“SmokeTest”)

[How we do it in Kapital

A fresh image every time

[A fresh image every time

Always ensure your code loads in a
fresh image

Of course, there are times where the
iImage Is wrong

[How We do it in Kapital

Dangers of savedowns

[Dangers of Savedowns

Building an image is great but...
IT TAKES TIME!

[Breaking the Build ...

It will happen!

Don'’t let the build process become a
burden

It's nothing more than a failing sanity
check

[ldentifying the Issue ...

3 types of failures

O Successful build, but failing tests
© Uncompleted build

O Successful build, but failed load

[ldentifying the Issue ...

3 types of failures
Successful build, but failing tests

Successful Build, but Failing
[Tests

Is your code wrong ?

Is your data wrong ?

[ldentifying the Issue ...

3 types of failures

Uncompleted build

[Uncompleted Build

This is Smalltalk, you can debug
Find the offending code change first

Typically it's a prerequisite issue. A
method not yet introduced, a class (or
variable) not yet declared

[ldentifying the Issue ...

3 types of failures

Successful build, but failed load

Successful Build, but Failed
[Load

The code didn’t load all the way

Revealed by the tests run on the image
(missing code)

Know your SCM system well!
© ENVY does this for overrides

[And Fixing the Build!

Always find the error before fixing it

You must fix the build before you can
validate today's code base

[And Fixing the Build! (2)

3 types of errors can be introduced by
code changes:

© Calling a method not yet present
© Depending on code not yet released
© Clashing code

[And Fixing the Build! (2)

3 types of errors can be introduced by
code changes:

© Calling a method not yet present
O

O

Calling a Method Not Yet
[Present

[And Fixing the Build! (2)

3 types of errors can be introduced by

code changes:
O

© Depending on code not yet released
O

Depending on Code Not Yet
[Released

[And Fixing the Build! (2)

3 types of errors can be introduced by

code changes:
O

O

© Clashing code

[Clashing Code

a.k.a mismerged code

Because some classes are centers of
high activity

[Questions ?

yann@monclair.fr

