

Starting fresh every morning

Building a new Building a new
development image every development image every

morningmorning

$> whoami

What We Are Talking About

What We Aren’t Talking About

Introducing the Beast

 Kapital has been actively developed since
1995

 Kapital has more than 22000 classes
(VW with ENVY has 2200)

 Kapital is more than 70 developers pushing
changes everyday!

 Every development cycle we change 5000
classes

 Each day, we change from 60 to 150 classes

Why Change My Image ?

 Resynchronizing the code base with the other
developers

 Avoiding important splits from the main branch
 Checking prerequesites
 Avoiding unknown dependencies

Why Change My Image ?

 Resynchronizing the code base with the other
developers

 Avoiding important splits from the main branch
 Checking prerequesites
 Avoiding unknown dependencies

Resynchronizing the Code
Base

 The sooner you merge, the better
 Everyday, 60 to 150 classes are changed
 Everyday, 25 change sets are applied

 Average size of a change set = 5-8 classes
 25*5 = 125
 25*8 = 200

 Avoiding multiple implementations for a single
piece of functionality

Why Change My Image ?

 Resynchronizing the code base with the other
developers

 Avoiding important splits from the main branch
 Checking prerequesites
 Avoiding unknown dependencies

Avoiding Important Splits

 Decompose code changes into smaller, more
manageable steps

Why Change My Image ?

 Resynchronizing the code base with the other
developers

 Avoiding important splits from the main branch
 Checking prerequesites
 Avoiding unknown dependencies

Checking Prerequisites

 Always make ENVY happy 

Why Change My Image ?

 Resynchronizing the code base with the other
developers

 Avoiding important splits from the main branch
 Checking prerequesites
 Avoiding unknown dependencies

Avoiding Unknown
Dependencies

#{MyClassOrGlobalVariable}

ifDefinedDo: [:thing | thing doStuff].

THIS IS NOT GOOD !!!

How We do it in Kapital

 Loading the top level map
 Validating the build
 A fresh image every time
 Dangers of savedowns

Introducing ENVY/Developer

 Applications and configuration maps
 Granularity = methods (class,

application, config map)
 Great flexibility (ENVY boy talking )

How We do it in Kapital

 Loading the top level map
 Validating the build
 A fresh image every time
 Dangers of savedowns

Loading the Top Level Map

 Kapital benefits from base ENVY
functionality

 BEWARE! ENVY is known to bite
developers!

How we do it in Kapital

 Loading the top level map
 Validating the build
 A fresh image every time
 Dangers of savedowns

Validating the build

 Two types of testing systems
 Code driven = specific code items (SUnit

style)
 Data driven = end-to-end testing

(“SmokeTest”)

How we do it in Kapital

 Loading the top level map
 Validating the build
 A fresh image every time
 Dangers of savedowns

A fresh image every time

 Always ensure your code loads in a
fresh image

 Of course, there are times where the
image is wrong

How We do it in Kapital

 Loading the top level map
 Validating the build
 A fresh image every time
 Dangers of savedowns

Dangers of Savedowns

 Building an image is great but…
IT TAKES TIME!

Breaking the Build …

 It will happen!
 Don’t let the build process become a

burden
 It’s nothing more than a failing sanity

check

… Identifying the Issue …

 3 types of failures
 Successful build, but failing tests
 Uncompleted build
 Successful build, but failed load

… Identifying the Issue …

 3 types of failures
 Successful build, but failing tests
 Uncompleted build
 Successful build, but failed load

Successful Build, but Failing
Tests

 Is your code wrong ?

 Is your data wrong ?

… Identifying the Issue …

 3 types of failures
 Successful build, but failing tests
 Uncompleted build
 Successful build, but failed load

Uncompleted Build

 This is Smalltalk, you can debug

 Find the offending code change first

 Typically it’s a prerequisite issue. A
method not yet introduced, a class (or
variable) not yet declared

… Identifying the Issue …

 3 types of failures
 Successful build, but failing tests
 Uncompleted build
 Successful build, but failed load

Successful Build, but Failed
Load

 The code didn’t load all the way

 Revealed by the tests run on the image
(missing code)

 Know your SCM system well!
 ENVY does this for overrides

… And Fixing the Build!

 Always find the error before fixing it

 You must fix the build before you can
validate today’s code base

… And Fixing the Build! (2)

 3 types of errors can be introduced by
code changes:
 Calling a method not yet present
 Depending on code not yet released
 Clashing code

… And Fixing the Build! (2)

 3 types of errors can be introduced by
code changes:
 Calling a method not yet present
 Depending on code not yet released
 Clashing code

Calling a Method Not Yet
Present

… And Fixing the Build! (2)

 3 types of errors can be introduced by
code changes:
 Calling a method not yet present
 Depending on code not yet released
 Clashing code

Depending on Code Not Yet
Released

… And Fixing the Build! (2)

 3 types of errors can be introduced by
code changes:
 Calling a method not yet present
 Depending on code not yet released
 Clashing code

Clashing Code

 a.k.a mismerged code

 Because some classes are centers of
high activity

Questions ?

yann@monclair.fr

