GStreamer

John M McIntosh
http://www.smalltalkconsulting.com

Maintainer, Squeak Macintosh VM
Sophie Authoring Tool, storage & media subsystem code.

In progress
Squeak VM iPhone Port.

Squeak VM Macintosh OS-X (10.5+) re-engineering
Macintosh Hydra support

GStreamer

http://www.gstreamer.net/

GStreamer is a library for constructing of graphs of media-handling components. The use
cases it covers range from simple Ogg/Vorbis playback, audio/video streaming to complex
audio (mixing) and video (non-linear editing) processing.

It's a mesh network of data flow objects. Obvious uses are read a media file, decode and play
the resulting audio and video to your audio/video hardware.

Non-obvious uses are using the network aware media get element to stream data into the file
system put element thus enabling the downloading of internet files to the local file system.

Codec elements are broken into three major groups, Base, Good, Ugly. Where each category
defines issues with stability and licensing (or lack there of). All work and testing was done
with 'Base’ which is approved for OLPC

GStreamer

http://www.squeaksource.com/GStreamer.html

The GStreamer plugin for Unix systems was written via funding from Viewpoints Research
Institute, Inc. to replace the Squeak Mpeg plugin, thus providing an patent un-encumbered
media player for the OLPC. The target media is OGG, but one in theory could load the MPEG
or other media codec on an OLPC enabling the playback of other forms of media.

Platform Status:

Windows, in progress via Qwaq

Macintosh OS-X, need unix expert to build libraries
OLPC, available

Linux, available (in theory)

GStreamer

The plugin and supporting Smalltalk code is licensed via

* Created by John M MclIntosh on 3/10/08.

* Copyright 2008 Corporate Smalltalk Consulting Ltd.

* http://www.smalltalkconsulting.com All rights reserved.

* Written for Viewpoints Research Institute http://www.vpri.org/
* http://www.opensource.org/licenses/mit-license.php

GStreamer

SmartSyntaxInterpreterPlugin subclass: # GStreamerPlugin
About 100 primitive calls to support a subset of the GStream C api

Written for 32 bit systems, it could be altered for 64 bit systems, volunteers can submit code
for that. The GStreamerPlugin class contains 99% of the SLANG code, there is a small
percentage of C code to support the ability of Squeak to push data into a fake GStreamer
element source, and to pull data from a fake element sink.

The Smalltalk code base.

SUnits for every method publicly exposed and each primitive call, plus various test scenarios

GStreamer

The architecture is subclassed off of GStreamerObject

x
l_J

Ed

GItreamer-Base

= =5 I

b v e rendersy

Frotodbieqt
Oijest

GEtreameriibizcl

GErresmar B
GEtresmerCs {2
EErreamertlock
CErreamerElemant

GEtreamerBin

GEtreamar™Mpaline
GFEtreamerPipelineSqueakiink
Chtreamerfipelinesqueakiudiozink

FEtrea marfpalineSquaskFidensink

CEtreamerPipelinesqueakine
GEtreamarMpalineSqueak AudioSre
Etres merkipelineSguenk VideoSro
CotresmerElementPorsqieakiinkhudio
ErreamerElemeantEorSquankSin kW ide
CorreamerElementPorsqienkirs ando
CEtreamer ElementPorSquaa kSrctideo
GFEtresmerElementFactory
EEtresmerblaccaga
GEtres e Fa.d
GotresmerFequestPad
CErreamerSiatcPad

instance ¥ class

L pleme o

r Object cubclass: FEIreamerObijact

°E
F
“F
b
b

handle 1z a memory addrese for a6 GSteeamer Object

instancaVariablaNames: "handle'
slansVaprinbleNames: "Regisuy”
poolicticneries:

catpgory: GEtresamer-Hegs'

rersions

Hierarchy Browser: GStreamerObject

=l — all — &l acrasExecanr
Al accosnnp & finelize
finelize zeileyYolee Boolenn!
gat valus el ey ValueDouble:
sat value aeiayYeluallont;
initialize-releass getieyValuelonglong:
state geilayYelualonp:
TyEtem primitives zeileyYolee Pointer:
teating geileyPalusSiring:
galsyYeluallLongLong:
getkeyYalusULong:
gt Simplfindstate
gesmallelkObjest:
geiSiate:
hm e
handle:
IsHetdleEane
neChesckEandle
nolheckBanda:
otmetlnre
primpobjectgattonll rom nal
primpgobpecteatdon tlefrom: 1
primgoebjscrgetlloa rom ns
primpobjectgetlongiirom:ine:
primeobjectzetionglong fron
primpobsctg et podnieri PO
-~ primpgobpctestemellialkotpe
primgobiscrgetnringi nomn
« | primpobjectgetulongs romin

rn i v v B B vt e 1 1 anes Tosan e e

inberitance higrar<hy ingt wars S E R

L Pegistar is the Wealk Reglstecy 10 snable our abdity 10 deal with Gl Objests
gl * Crested by John M Melntosh on 3000006,

+*

i
L -

i
A=

Copyright 2008 Corporate Smallielk Conswelting Ltd, http v ww coalltelkconzulting. com &1L rights ressreed,
Written for Yiewpoints Rerearch Ihsttam btipusslsww. wpri.orgs
* hitpudw W opensouees 0 0 gl cen pesd - Hosne, php

GStreamer

GStreamer supports finalization/GC on the C side so we have to be careful on the Smalltalk
side that GC finalize does not trigger a double C memory free call. So we have painfully
created an inheritance tree on the Smalltalk side, since freeing a pipeline for example frees
elements, but not say explicit dynamically created pads.

Complex rules, but seems correctly implemented?

¥ Inheritance of finalize [8] @0

Otject finalize {finalization}

GEtreamerObject finalize {finalize}

GEtreamerCaps finalize {finalize}

GEtreamerElement finalize {finalize}

G3treamerBin finalize {finalize}
GitreamerPipelineSqueakaudioSink finalize {finalize}
GitreamerPipelineSqueakVideoSink finalize {finalize}
GEtreamerPad finalize {finalize}

browse zenders | implementors wersionz | inhetitance hierarchv | inst wars | <lazz vars | source

finalize
"0k o1 finalization we want to dizpoze of the object, but thiz can be overridden bw
subclazzes, for example GitreamerElement objectz defer 1o their pipeline to dizpoze of their
elements"

zelf objectlUnrefl

GStreamer

A element is either a source or sink, or both. You instantiate a GStreamerElement (or
subclass), this element then is tied to a instance of the C code GStreamerElement subclass.

"Make a Volume control element"
"This element modifies the data stream to adjust the sound volume"

volume := GStreamerElement elementFactoryMake: volume' name: volume'.
self should: [volume isHandleSane]. "check C handle for sanity"

You then create a GStreamerPipeline or Bin which will contain the elements, and then you
connect the items by indicating how the individual Pads on each object should connect to the
objects before and after in the pipeline. In most cases plugins have static Pads, but some have
dynamic Pads which are only created based on the data is flowing.

Pad linkup can be automatic, but in some cases it requires more complex commands due to
choices that need to be made. You can ask a Pad for it's type, it may answer that multiple
kinds of MIME Types are supported.

GStreamer

For example, let's playback a tone from a tone generator.
First we need an audio source, there is a source data node that produces tones. 'audiotestsrc'

audiotestsrc := GStreamerElement elementFactoryMake: 'audiotestsrc' name: 'source’.
"Note how I give an alias name 'source' so I can find it via name in the pipeline later"

We then need a converter which is responsible for changing one form of audio to another, this
then converts the audio format coming from audiotestsrc to the target sound player. Recall
that there are many basic audio formats, integer, fixed, or float data, compression etc.
audioconvert := GStreamerElement elementFactoryMake: 'audioconvert' name: 'convert’
In this case the audioconvert element looks at both sides, asking each Pad what it can work
with, then resolves either a common agreement for direct pass thru or does data conversion

between the two elements. Finally we add a converter to manage playback Volume

volume := GStreamerElement elementFactoryMake: 'volume' name: 'volume’.

GStreamer

Finally we create the sink, which talks to the platform's ALSA hardware
audiosink := GStreamerElement elementFactoryMake: 'alsasink’' name: 'sink’.
Now create the pipeline, and add all the elements

pipeLine := GStreamerPipeline name: 'my-pipeline’.

result := pipeLine addElement: audiotestsrc.

result := pipeLine addElement: audioconvert.

result := pipeLine addElement: volume.

result := pipeLine addElement: audiosink.

Obviously we could have a helper method to make this a bit less wordy.

Later when we release the pipeline it will release all the elements automatically.

GStreamer
Now link up the elements

result := GStreamerSystem default linkElementSrc: audiotestsrc toDest: audioconvert.
result := GStreamerSystem default linkElementSrc: audioconvert toDest: volume.
result := GStreamerSystem default linkElementSrc: volume toDest: audiosink.

Once a pipeline is created it has a number of states, this also applies to individual items in a
pipeline, they are #pending, #null, #ready, #paused, #playing.

pipeLine setStateTo: #playing.
(Delay forSeconds: 1) watit.
pipeLine setStateTo: #paused.
pipeLine setStateTo: #null.
pipeLine release.

In the above example after building the pipeline the state will be #null, so I send it #playing
which starts the pipeline and starts the elements. We delay for one second, then I send
#paused to stop the pipeline, then I send it #null to change it to a releasable state, then I send
release to the pipeline.

GStreamer
More examples: making a number of seconds of test audio

>>makeTestDataAudio
| pipeLine filesink audiotestsrc |

pipeLine := GStreamerPipeline
createPipeLineCalled: 'foo' thenBuildAndLinkElements: #(‘audiotestsrc’ 'filesink’)
initialize: [:p |].

>>thenBuildAndLinkElements:initialize:

Takes a list of element names to build, stick in the pipeline and link together, along with a
block that is evaulated with :p being the created pipeline so you can initialize it.

filesink := pipeLine findElementCalled: 'filesink'.
audiotestsrc := pipeLine findElementCalled: 'audiotestsrc’.

Remember I said we can find elements by their aliases?

GStreamer

filesink setKey: 'location’ toStringValue: self dailyTempFileNamePath,'Audio’.
audiotestsrc setKey: num-buffers' toLongValue: 1000.

setKey:toStringValue:

There are a large number of methods to get or set meta-data on an element, in this case we set
the location attribute for the file sink to a particular file/directory path, and we ask the audio
test source element for only a certain number of buffers 'num-buffers'. *Cough* remember C

is a data typed language!
See the Unix cmd gst-inspect element

very helpful in describing what named properties an element has.

GStreamer
Now set the pipeline playing which generates the 1000 buffers of data.

pipeLine setStateTo: #playing.
lastMessage := pipeLine getBus waitUntilErrorOrMessage: 'eos' uptoMilliseconds: 5000.
pipeLine release.

The waitUntilErrorOrMessage:uptoMilliseconds: is a helper method which looks at
data on the pipeline communication bus and returns if we see the 'eos' End of Stream
message, or an error message, or if 5000 milliseconds pass. Normally we would expect the

€0S

Technically the code above is incorrect since I should be looking for the returned message of
'eos’ or 'error'/ nil which means the timer ran to the limit.

GStreamer

Now let's look at a much more complex item, you want to playback an OGG file from the
internet to your audio hardware. For this example the unix command would look like so:

gst-launch gnomevfssrc location="http://www.gutenberg.org/files/20000/0gg/20000-47.0gg' ! oggdemux name=demux
demux. ! vorbisdec ! audioconvert ! osxaudiosink

Setting pipeline to PAUSED ...
Pipeline is PREROLLING ...

Pipeline is PREROLLED ...

Setting pipeline to PLAYING ...

New clock: GstAudioSinkClock

"Do a Cmd-C to stop the play back"

~CCaught interrupt -- handling interrupt.
Interrupt: Stopping pipeline ...

Execution ended after 4884110000 ns.
Setting pipeline to PAUSED ...

Setting pipeline to READY ...

Setting pipeline to NULL ...

FREEING pipeline ...

In typical unix fashion you will find there are multiple ways to code 'gst-launch' requests to
perform a desired action.In this case we ask the gnomevissrc (gnome virtual file system src
element) to read data from http://www.gutenberg.org/files/20000/0gg/20000-47.0gg , this
is fed to the oggdemux which demuxs the data into audio and video streams. We only feed the
audio side into the vorbisdec element which is the vorbis audio decoder, which we then
convert from the resulting audio format to the format needed for the os-x audio hardware.

GStreamer

In Squeak we require a few more lines.

>>setupoggAudioNormalFromHttp: aURIString

| oggdemux pipeLine result audiosink audioconvert vorbisdec vorbisdecSinkPad vorbisdecSinkPadCaps
vorbisdecSinkPadCapsString gnomeuvfssrc |

"make all the elements"

gnomevfssrc := GStreamerElement elementFactoryMake: 'gnomevfssrc’' name: 'gnomevfssrc’.
oggdemux := GStreamerElement elementFactoryMake: 'oggdemux' name: 'oggdemux'.
vorbisdec := GStreamerElement elementFactoryMake: 'vorbisdec’' name: 'vorbisdec'.

audiosink := GStreamerElement elementFactoryMake: self audiosink name: 'audiosink’.
audioconvert := GStreamerElement elementFactoryMake: '‘audioconvert' name: 'audioconvert’.

"Supply the URI"

gnomevfssrc setKey: 'location’ toStringValue:
'http://www.gutenberg.org/files/20000/09g/20000-47.0g4".

GStreamer
"Setup the pipeline”

pipeLine := GStreamerPipeline name: 'my-pipeline’.

result := pipeLine addElement: gnomeuvfssrc.

result := pipeLine addElement: oggdemux.

result := GStreamerSystem default linkElementSrc: gnomeuvfssrc toDest: oggdemux.
result := pipeLine addElement: vorbisdec.

result := pipeLine addElement: audioconvert.

result := pipeLine addElement: audiosink.

"Start linking elements together"

result := GStreamerSystem default linkElementSrc: vorbisdec toDest: audioconvert.
result := GStreamerSystem default linkElementSrc: audioconvert toDest: audiosink.

GStreamer
"Now lets setup the dynamic pad link via a C callback that is implemented by the Plugin”

vorbisdecSinkPad := vorbisdec requestStaticPadByName: 'sink’.

oggdemux requestCallBackForSignal: 'pad-added’ useArray: (Array with:
vorbisdecSinkPad).

The requestCallBackForSignal: useArray: is a bit of magic that enables the
"pad-added’' message that flows on the bus to be seen and acted upon by a 'C' callback
procedure since the vorbisdec element only creates the src pad we need for audio once it
decodes the fact there is audio data. On the 'pad-added' message we then connect the waiting
sink pad to the dynamically created src pad. If we were doing audio and video we would have

coded

oggdemux requestCallBackForSignal: 'pad-added’ useArray:
(Array with: vorbisdecSinkPad with: theoradecSinkPad).

So on the 'pad-added’ callback the data type that is added maps to either of the Sink Pads

GStreamer

Time, where in this Time based Media am I?

seekToTimeInSeconds: seconds
seekToTimeInSecondsEnsurePlaying: seconds
seekToTime: nanoSeconds

You can sent a request in seconds or nano-seconds to the pipeline, say you want to start
playback at 5.0 seconds, the pipeline then will then ask it's elements to seek to 5 seconds.

or seekToPercent: or seekSimpleFormat:flags:cur: to seek on some other time based
value.

This all combines in a GStreamerMoviePlayerMorph,
GStreamerMoviePlayerMorph, GStreamerPlayer set of classes that are a clone of the
original MP3 Morphic player written by John Maloney.

GStreamer
Squeak as a Sink or Src? Either for Audio or Video

Normally we just play the audio directly to the hardware playback element, why direct OGG
audio to squeak to have it play with bits then give to audio hardware

See oggHookupToSqueakAudioViaSqueakSink versus
oggHookupToSqueakAudioAndVideo

For Video well we need to see the bits.
See class GStreamerElementForSqueakSinkVideo

and
testPipeCheckPadHookupToSqueakAudioAndVideo

But a UNIX X11 guru could alter the logic to embed X11 window into squeak window and
bypass Squeak VM for video generation. Pending action on OLPC.

The interface uses the 'fakeSink' element which calls an indicated procedure when data
(video/audio) arrives for the element. We have a Smalltalk Class and a primitive api that
setups the GStreamer element to call back to the Squeak plugin to queue the audio or video
data then signal a semaphore. The supporting Smalltalk Code which is waiting on the
semaphore then wakes up, and pulls the data from the plugin for the video or audio. We use
both audioconvert or ffmpegcolorspace to convert the data from it's native form into a known
format for Squeak to interpreter, versus having Squeak do that work.

GStreamer

'fakeSrc' where Squeak is a source for video/audio is left as an exercise for the reader.

There is primitive code support, and Smalltalk code framework to support this, but no
working example.

GStreamer
playbin and playbin2

Factory Details:
Long name: Player Bin 2
Class: Generic/Bin/Player
Description: Autoplug and play media from an uri
Author(s): Wim Taymans <wim.taymans@gmail.com>
Rank: none (0)

Element that is a pre-built Bin that handles all the playback details.
Could use to playback audio/video in squeak versus current hand built pipeline.

Did not work on OLPC

Squeak code example, left as an exercise for the reader!

