valeria murgia
product design lead - caesar systems

leandro caniglia
director of development - caesar systems

Deno

Use the software
(Generate some changes
Show the changes browser

Replay them

Loggl ng user changes

. wrapper
Composite Pane PP

message message

owrapper

1 | N

Changes

o the model? -
Log

b

GCommand | oggi ng

message
wrapper

»

Changes collection

¥ ¢
Warning! store {/ /
— Validates? change

/.

l message

- -

Change structure

not nil not empty not nil resolvable arguments size

responds to command arity

command

)
e
O
D
o
o
@)
-
.m

Oreat | ng

nil

t

ModelObjectWrapper

wrappee
changelog

— private —
doesNotUnderstand:
—all user commands—
add

newThis:

newThat:

remove:

renameTo:

changes

doesNotUnderstand: aMessage

| selector |

selector := aMessage selector.

(self shouldBuildMethodFor: selector)
ifTrue: [self buildMethodFor: selector]
ifFalse: [aMessage receiver: wrappee].

NaMessage perform

renameTo: arg
changelLog newChange
wrappee: wrappee
command: #renameTo:
argument: arg.
Mwrappee renameTo: arg

d asses | nvol ved

e CHOlCIolI eI~ — — — — ———— = ChangelLog

UserChange sl s ChangeValidator

Repl ayl ng changes

Change

file in

g

€S
Validates? ! > Execute the change

perform | receiver wrapper |
receiver = self resolve: receiverName.
wrapper := self wrap: receiver.
Mwrapper
perform: command
withArguments: arguments

Appl

| cat 1 ons

Recovery log

al

the time save every change on disk

Auditing

W

no changed what, when and how

Local redo (can be used for undo)
right click on any object and list all its changes

Scr

pting

use the changes system as a scripting language

Appl | cat 1 ons cont | nued

Demos & Tutorials

demo your system by replaying changes
Overcome back compatibility issues

recreate old projectsfrom their changes
Merging

merging changesis easier than merging objects
User support

solve the user’s problem and send back the
changes

Appl | cat 1 ons cont | nued

Bug reporting

send the changesthat exhibit a defect

don’t know what you did?look at the changes!
Testing

look at the changesto write unit tests
Regression

build alibrary of scriptsto test your system
Learning (new programmers)

use the changes as debugging entry points

Appl | cat 1 ons cont | nued

= Metrics

count the number of commands your users can
perform

how many keystrokes does your software require?
measure user dedication and productivity

which areas of your software are more heavily
used?

understand users’ workflows
discover bad practice patterns

Appl | cat 1 ons cont | nued

= Teamwork

combine changes from different contributorsinto
the same model

= Database conflicts

let usersrecover conflicting changesthat did not
get committed

= Database: automated check-in/check-out
download a project from the database
work at home
apply your changes back to the repository

Deno

Open a project

Make some few changes
Create two scenarios

—dit & change the scenarios
Show the changes

Ceci si on anal ysi s: scenari 0s

1. Copy the base
model 4. keep the

' Every change-set

represents a scenario

2. Let the user edit the 3. forget the scenario
copy

Scenari os contl nued

ITF_I|=.

1. Copy the base 2. Locate the
model change set

3. Apply the changes

to the copy

\ ./

Parent / child relationship

Deno

= Decision Tree demo

Decl st on trees

@\’@

Parent Child A
>
changes changes

Child C
changes

Child B
changes

Child D
changes

Appl | cat 1 ons cont | nued

= Scenarios

assoclate change setswith scenarios for what-if
analysis

= Decision trees

Organize change sets under a hierarchical
structure

= Monte Carlo simulations
create one scenario for every random sample

Deno

= Monte Carlo demo

| nf | uences

Quest 1 ons

Have you implemented all the applications
described here?

Have you used the changes system to analyze
the workflow of end-users?

Doesthe changes system impact the
performance’

What'sthe overhead for programmers?
What if argumentsare not literals?
Can your system log any user action?

