
Advanced O/R Mapping with Glorp

Alan Knight (knight@acm.org)
Cincom Systems of Canada

Metaphor/Motivating Example

Ruby on Rails/ActiveRecord
Reading Database Schema

» Some interesting mapping issues
Creating Mappings Dynamically

» Conventions/Grammar
APIs

» Querying
» Globals, Singletons, Transactions

Schema Evolution
Web Integration

Ruby on Rails

“Opinionated software”
Rails

Go really fast, but only in one direction
Reaction against J2EE/.NET
“Greenfield” projects
Ruby-Based

Smalltalk-like, scripting language
Some very Smalltalkish “tricks” in rails

ActiveRecord pattern for persistence

Architecture: Glorp and ActiveRecord

Metadata vs. convention-driven
Glorp: Explicit metadata

Tables
Classes
Descriptors/Mappings

ActiveRecord
Strict naming conventions
Aware of language forms
Hints at the class level
Code Generation (mostly for web)

Brokers
Glorp

Single broker (session)
» Responsible for object identity
» Manages automatic writes

Multiple clients use multiple sessions
Independent of other frameworks

ActiveRecord
Classes as brokers

» No object identity
» Single global session

Explicit writes
Tightly integrated with web framework

Domain Model

Glorp
No metadata in domain classes
Premium on flexibility, ability to optimize
Expect existing classes, schema

ActiveRecord
Premium on simplicity
Minimal metadata, but on domain classes
May not even be a domain model

» Use ActiveRecord directly
» Instance variables as properties

Goal

Can we provide some of the benefits,
but without losing our advantages
“Hyperactive Records”

Automatic persistence
Convention-driven
But be less restrictive
Use a bit more information (constraints)
Allow a graceful transition

Issue: Reading Schema

Before we can automate, we need to
read the database schema.
A nicely recursive problem

DatabaseTable
•name
•constraints
•fields DatabaseField

•name
•isPrimaryKey
•type
•nullable

ForeignKeyConstraint
•name
•sourceFields
•targetFields

INFORMATION_SCHEMA

Mapping DatabaseField

DatabaseField
•name
•isPrimaryKey
•type
•nullable

table := self tableNamed: 'columns'.
(aDescriptor newMapping: DirectMapping)
 from: 'name'
 to: (table fieldNamed: 'column_name').

COLUMNS
•TABLE_NAME
•COLUMN_NAME
•DATA_TYPE
•IS_NULLABLE

Mapping #isPrimaryKey

ST: a boolean value
DB: primary key constraints are entities
Columns used in a constraint are listed in
key_column_usage
For a field, do any primary key constraints
exist that make use of it
Mapping a two-level join to a boolean

Mapping #isPrimaryKey
(aDescriptor newMapping: DirectMapping)
 from: #isPrimaryKey

 to: [:each |
each primaryKeyConstraints notEmpty].

Direct mapping, but to an expression
“each” is the field we’re referring to
primaryKeyConstraints is another
relationship
notEmpty is a subselect operation

Subselects
In queries, several “collection” operations
that turn into different kinds of subselects
isEmpty/notEmpty
select:
anySatisfy:/noneSatisfy:
sqlCount (also aggregation)

read: Customer
 where: [:each |
 (each orders select: [:order |
 order amount > 1000])
 sqlCount > 5].

Reading Schema Summary

sourceFields and targetFields worse
Information_schema variations, limits
Works for Oracle, Postgresql, MySQL
No changes at all to the domain model

But easier because read-only
Several pseudoVariables

Good motivation for automatic
mapping

Back to ActiveRecord

Glorp metadata
defined in DescriptorSystem
Methods for tables, classes, mapping
E.g. #descriptorForCustomer:
Lists allTables, allClasses

ActiveRecord DescriptorSystem

All subclasses of ActiveRecord
Read allTables from the database

For each class name, find table name
Find link tables from constraints or hints

For each inst var/field name, figure out
the mapping

Naming convention
Database constraints

Aside: Inflector

Ruby on Rails class
Knows basic grammar forms (English)
Knows class/inst var/field/table naming
and capitalization

Person class -> PEOPLE table
OVERDUE_ORDER_ID -> overdueOrder

Big ball of regular expressions

Aside: Hints

Ruby on Rails uses class data to tell it
how to create relationships that are
ambiguous
hasMany, hasAndBelongsToMany
tableNames (added)

Aside: Class Generation

Generate a package
Class for each database table

Filtered
Empty descriptor system with root
class

Incremental Setup

We want to do as little work as
necessary
How to “tweak” an automatically
generated mapping
#mappingNamed:do:

self mappingNamed: #bankCode do:
[:mapping | mapping type: Integer].

Rails Migrations

Define tables in Ruby code
Multiple versions, ordered by naming
convention
First version full
Subsequent versions define how to
upgrade and downgrade

In the database, store a version
number for the schema
Run the instructions in sequence

Smalltalk Migrations

We have full metadata definition of
tables
Keep multiple classes

Subclasses?
Modify the schema to conform to the
newest
Prototype level

No upgrading instructions, can lose data
Jumps directly from one to the other

Web Integration

Equivalent to automatic web forms
MagritteGlorp (Ramon Leon)

Extend Magritte with additional
information about relationship types
Generate Glorp descriptors based on
Magritte metadata

Web Integration

GlorpActiveRecordMagritteSupport
Magritte metadata based on Glorp

Assume Magritte editor based on data
type

Glorp metadata based on database

References

GLORP
http://www.glorp.org
http://glorp.sourceforge.net

Ruby on Rails
http://www.rubyonrails.org/
Lots of other links

The End

Subselects

In SQL terms, a nested query
Many different uses

tend to make the brain hurt
Glorp provides various shortcuts for
specific Smalltalk semantics, plus a
general mechanism

sometimes also make the brain hurt
still settling on semantics, naming

Subselect Example

e.g.
… where: [:each | each members
anySatisfy: [:eachMember | eachMember
name like: 'Alan%']].

SELECT <project fields>

 FROM PROJECT t1

 WHERE EXISTS (

 SELECT <whatever> FROM MEMBER s1t1 WHERE

 s1t1.proj_id = t1.id)

Aggregating
Two forms of aggregating
At the query level

aQuery retrieve: [:each | each value sum]
Puts an aggregate into the fields of the SQL
SELECT ... SUM(t1.value)

Within a where clause
where: [:each | (each value sqlSum) > 10]
Creates a subselect of that aggregate
SELECT ... WHERE (SELECT
SUM(s1t1.value) FROM ... WHERE ...)
> 10

min, max, average, count, etc.

Still More Aggregating

Also within a where clause
 expression count: [:x | x attribute]

or more generally
 expression

 count: [:x | x attribute]

 where: [:x | x something = 5].

More awkward than
 expression sqlCount

Not really more powerful

General Aggregations

General facility
read: GlorpCustomer

 where: [:each | each

 (each
 aggregate: each accounts

 as: #countStar

 where: [:acct | acct price > 1000]])

 = 1].

Really awkward
More general

Only requires the underlying function to
exist

Select:

count:where: suggests a more
Smalltalk-like form

 where: [:each |

 (each users select: [:eachUser |

 eachUser name like: 'A%])

 sqlCount > 3].

Or we could apply other operations
e.g. anySatisfy: to the filtered
collection.

Fully General Subselects

A subselect is represented by a query.
aCustomer accounts

anySatisfyExists: [:eachAccount |

 eachAccount in:

 (Query

 read: GlorpBankAccount

 where: [:acct |

 acct balance < 100])]].

Very general, but awkward
Often putting queries into block temps,
setting retrieve: clauses, etc.

Correlated Subselects

Are the internal selects effectively constants,
or do they refer back to things in outer
queries
Slower in database, but more powerful

read: StorePackage where: [:each |

| q |

q := Query read: StorePackage

 where: [:eachPkg |

 eachPkg name = each name].

q retrieve: [:x | x primaryKey max].

each username = 'aknight' & (each primaryKey
= q)].

OK, No More Subselects

Yes, these are complicated
Sometimes you need them
The tests are a good resource for code
fragments to copy from
Or just experiment until you get SQL
(and results) you want

