Expressive Testing
...and your Code For Free?

Tim Mackinnon
www.iterex.co.uk

p
Presentation Outline+QObjectives

SUnit — features and flaws

Importance Of Failures — failing is good right?
Readability

Assertions as Intent

More specific testing

Code for free

m | want to get feedback on these ideas, is there
something interesting?

SUnit - 13 Years On

m From the SUnit site:
“SUnit is the mother of all unit testing frameworks, and
serves as one of the cornerstones of test-driven
development methodologies such as eXtreme
Programming”

m Simple model for testing, inspired many X-Unit clones
m Available on all Smalltalk implementations

m Current Smalltalk version is 3.1 — stable but no recent
development work

m Many popular frameworks ship with SUnit tests. So how
are tests in the wild?

) o

IterEx

Sample SUnit test

&) Method source |'l::[' Class definition | %) Class comment | © Class Diagram | @ Views

testAuthorizedLogins
self

assert: resource authorizedloging size = 2

assert: (resource authorizedloging includes: ‘peter’);
assert: (resource authorizedlogins includes: alan’;

deny: (resource authorizedLogins includes: 'gosling?;
deny: (resource autharizedLogins includes: 'gabriel)

L] Swazoo-Tests

) -
:" e

IterEx

Sample SUnit Result

(€] SUnit Test Runner sl e)
WriteStreamTest -
TearbonthWeekTest L]

YearTest
-
Stop L zelect all _.-Ix de=zelect all _.-Ix togele zelections _J -

Fail

S run. 4 passzez, 0 expected failures, 1 failurezs. 0 errors. 0 unexpected paszes

YTearTest->*tezstCurrent ’l E
Very minimal indication of -
the cause of the failure A

[4]

Sample SUnit Result

IterEx

¥ SUnit Browser

File Browse Test Configuration Toals Help

EOX

{ -.H--..._ . !__r_"._ T T T —— I._- e e e — i TR
' |U] Packages | # SUnitBrowser | £% ACLResourceTest | g Method Explorer | 4 ACLResource

B B EOAC =S G ' . OCU . ang

Suite _orreck Failures Test Case

ﬂ ACLResourceTest _,'.f-a ACLResourceTesk = =testauthorizedLogins

J\‘_-.‘ ACLResourceTest > =testPasswords
_l}z ACLResourceTesk = =testReadUsers
!:‘ AiZLResourceTesk » »testSessionAutharizakion

£

All 1 fissertion failed

Slightly improved failure indication in the status bar
via “Intelli-Dolphin” but still not particularly helpful

So what’s wrong with this?

m Generic style tests require using a debugger to find out
the problem

m The error displayed the in SUnit Runner is not very
descriptive/helpful

Not bad when doing initial TDD, but if mass failures afterwards,
can be tedious to track down a problem

Not always clear that you got the failure you expected unless
you take the time to debug

m Erwin Reichstein (Carleton University — undergrad CS)
“If you don’t find any errors in your code — you should be
very worried”

IterEx

How about writing tests a different way?

m Concisely indicate your test intent, and leverage this information to
give clear messages for inevitable failure...

& Method source | ¥ Class definition | €) Class comment | ©5 Class Diagram

testAuthorizedLogins
resource authorizedlLoging size shouldEqual: 2.
resource authorizedlogins shouldinclude: ‘peter’
resource authorizedLoging shouldlinclude: ‘alan’,
resource authorizedLoging shouldMotinclude: 'gasling'.
resource authorizedLoging shouldhotinclude: 'gabriel

|| Swazoo-Tests

) =

/
IterEx

And presenting test results more usefully?

® SUnit Browser

File Browse Test Configuration Tools Help

;_:]._ Method Explorer | ‘l::i ACLResource I :1 Method Explorer
L Packages " 0% Includes I # SUnit Brawser

PNTT

i)

i_orreck Failurgs Tgst i_ase
ﬂ AT ResourcaTest? f‘ ACLResourceTest? = =testAuthorizedLogins
:‘1 ACLResourceTest? = =testPasswords
._}ﬁ}, ACLResourceTest? = =testReadsers

}11 ACLResourceTesk? = =test Sessionduthorization

£ | >
Al _[:1 Constraint Error: & Set('alan,kay' 'peter,gabriel) should include: ‘peter

Constraint provides a much clearer indication of the error

IterEx

SUnit Issues that cropped up...

m TestResults do not store the exception that causes them
Therefore a Ul has no additional information to report

m If you store the exception, how can you get a meaningful
message from it?

ST
_ .‘/ u

IterEx

Expressing Expectations as Objects

m Create a family of Constraint
objects with a protocol:

#satisfies:
#verifyWith:
#errorMessageFor: © Eegins |
#printAbbreviationOn: ggfgf':””m'”t
ﬁEquaI
ﬁGreater
[| Try to use readable © Object = @) Constraint = @ IEREE e 0= @) Identical
terminology for instantiation gmdes
Equal to:) Less
) Makch
Less than: -4

m Loose methods for
convenience of instantiation

#shouldEqual:

Lets explore some code

IterEx

(Egqual to: &) verifyWiith: 8.
(Less than: 2) verify¥\ith: 5.
(

Begins with: ‘hella’) erraridessageFor warld'

o0 apg|
N
a
W

| & Method source | {¥ Class definition | ©) Class comment | OF Class Diagram | @ views | (&, Code Mertor |

. . ﬁ And
ﬁElnaryCDnstralnt = ﬁOr

ﬁ ConskraintAdapter
ErrarCanstraink
g Irrnrl:ll:nlar eDnndserni::IZ-lnnstraint = é Any é Different
F © MultivaluedConstraint = @) One
@ Chiect B @ A= @) Begins @ Sequence
) ElockConstraint

ﬁ Ends

€ Equal

ﬁ Greater
€ UnaryConstraink = @) Identical

ﬁ Includes

@) kind

ﬁ Less

ﬁ Match

) Mot

L) Constraints

More Complex Constraints

constraint :=
(Begins with: 'p") | (Ends with: ‘s’) & [:i | | size < 5].

m In using constraints, discovered some useful new
patterns:

(Begins with: 'p') & Different values.
Only values: #(‘peter’ ‘john’)
Sequence of: #(‘peter’ ‘john’ ‘harry’)

m Leverage these objects to generate more specific error
messages:
“lohn not item 1 in #(‘peter’ ‘john’ ‘*harry’)

ST
_ .‘/ u

IterEx

Do constraints have other users?

m Yes - Specifying expected values on method calls for
testing:
MethodWrappers
MockObjects

m Code generation

_ /’%_\

IterEx

Example of a test using Mocks and Constraints

SUnitNameParser

®

SUnitTest O l Reporter

ObjectDocumentor

Use Constraints (Il) to verify each invocation
to a proxy object

/ ~

IterEx

Example Mock test using constraints

testDoesntProcessNonTestMethods

[report nameParser methods documentor|
methods = #('setUp' 'testCalculates").

nameParser := mockery createMock: #SUnitNameParser.
report := mockery createMock: #ResponsibilityReport

documentor := ObjectDocumentor new.

[documentor process: methods using: nameParser onto: report]
expecting:
([nameParser i sTest Met hod: (Only values: methods)]
answerWith: #(false true))
+ ([nameParser par se: ‘testCalculates']

answer: 'Calculates’ exactly: 1)
+ [report print Responsibility:
(Kind of: String) &~ (Begins with: 'test’)] once

) o

IterEx

Generating Code from tests....

m Run the tests, gather all the mock objects used, ask
them to generate code, protocols, comments.

| ® SUnit Browser E'E”Z]

File: Browse =S Corfiguration Tools Help

| L) Packages

Run Al lests | &% aclResourceTestz | ¥ AcCLResource | ¢ FontSizer.st | o Esug.st | # Sunit Browser |
Fun Selected i = A= =l I

Debug Errors Motk Run Test Case

e i OhjectDocumentorTests = =testDoesntProcesshonTe. .
Inspect 4 ObjectDocumentorTests = =testDoesntProcesshonTe. ..
Dielate V ObjectDocumentorTests = =testProcessSeveralTestM., .

W' ObjectDocumentorTests = =testProcessSeveralTestM., .

Generakte Code,..

Reset

Al & 4 passed, O Failure(s), 0 errar(s) out of 4 testis) |

Future Work

m Keep gathering useful constraints (like Sequence,
Different etc.)

m Investigate if constraints can improve code generation
(beyond simplistic usages)

m |Investigate whether constraints can infer missing or
conflicting test cases

Conclusions

IterEx

Summary

When a test fails — ask yourself:

Is it telling me everything it can about the failur e?

Would expressing it as a test constraint make it
clearer?

Speaker:
Tim Mackinnon
http://www.iterex.co.uk/research

Related Work

m James Robertson’s Daily Smalltalk: ComplexConditions

(http://www.cincomsmalltalk.com/casts/stDaily/2007/smalltalk_da
ily-08-15-07.html)

Acknowledgements

m Blaine Buxton/Brian Rice for encouragement at
STS2006

m Nat Pryce for introducing me to the idea of constraints as
objects

/ ~

IterEx

Tim Mackinnon - Who are you?

m 1996 - OTI
Developer on teams credited for early use of agile practices

m 1999 — Connextra
Formed one of the first Agile teams in the UK
Invented “Mock Objects” test technique
Pioneered Iteration/Heartbeat Retrospectives

m 2003 — ThoughtWorks
Agile enablement coaching
Established hi-level release estimation techniques
Developed worldwide QuickStart project workshops

m 2006 — Iterative Excellence
Tailored Consulting for Agile projects

Iterex Professional — Software helping teams plan and track agile
projects

