
Expressive Testing
…and your Code For Free?

Tim Mackinnon
www.iterex.co.uk

Presentation Outline+Objectives

� SUnit – features and flaws
� Importance Of Failures – failing is good right?
� Readability
� Assertions as Intent
� More specific testing
� Code for free

� I want to get feedback on these ideas, is there
something interesting?

SUnit – 13 Years On

� From the SUnit site:
“SUnit is the mother of all unit testing frameworks, and
serves as one of the cornerstones of test-driven
development methodologies such as eXtreme
Programming”

� Simple model for testing, inspired many X-Unit clones
� Available on all Smalltalk implementations
� Current Smalltalk version is 3.1 – stable but no recent

development work

� Many popular frameworks ship with SUnit tests. So how
are tests in the wild?

Sample SUnit test

Sample SUnit Result

Very minimal indication of
the cause of the failure

Sample SUnit Result

Slightly improved failure indication in the status bar
via “Intelli-Dolphin” but still not particularly helpful

So what’s wrong with this?

� Generic style tests require using a debugger to find out
the problem

� The error displayed the in SUnit Runner is not very
descriptive/helpful
� Not bad when doing initial TDD, but if mass failures afterwards,

can be tedious to track down a problem
� Not always clear that you got the failure you expected unless

you take the time to debug

� Erwin Reichstein (Carleton University – undergrad CS)
“If you don’t find any errors in your code – you should be
very worried”

How about writing tests a different way?

� Concisely indicate your test intent, and leverage this information to
give clear messages for inevitable failure…

And presenting test results more usefully?

Constraint provides a much clearer indication of the error

SUnit Issues that cropped up…

� TestResults do not store the exception that causes them
� Therefore a UI has no additional information to report

� If you store the exception, how can you get a meaningful
message from it?

Expressing Expectations as Objects

� Create a family of Constraint
objects with a protocol:
� #satisfies:
� #verifyWith:
� #errorMessageFor:
� #printAbbreviationOn:

� Try to use readable
terminology for instantiation
� Equal to:
� Less than:

� Loose methods for
convenience of instantiation
� #shouldEqual:

Lets explore some code

More Complex Constraints

constraint :=
(Begins with: 'p') | (Ends with: ‘s') & [:i | i size < 5].

� In using constraints, discovered some useful new
patterns:

(Begins with: 'p') & Different values.
Only values: #(‘peter’ ‘john’)
Sequence of: #(‘peter’ ‘john’ ‘harry’)

� Leverage these objects to generate more specific error
messages:

“john not item 1 in #(‘peter’ ‘john’ ‘harry’)

Do constraints have other users?

� Yes - Specifying expected values on method calls for
testing:
� MethodWrappers
� MockObjects

� Code generation

Example of a test using Mocks and Constraints

ObjectDocumentor

SUnitTest Reporter

SUnitNameParser

Use Constraints () to verify each invocation
to a proxy object

Example Mock test using constraints

testDoesntProcessNonTestMethods

|report nameParser methods documentor|
methods := #('setUp' 'testCalculates').

nameParser := mockery createMock: #SUnitNameParser.
report := mockery createMock: #ResponsibilityReport .

documentor := ObjectDocumentor new.

[documentor process: methods using: nameParser onto: report]
expecting:
([nameParser isTestMethod: (Only values: methods)]

answerWith: #(false true))
+ ([nameParser parse: 'testCalculates']

answer: 'Calculates' exactly: 1)
+ [report printResponsibility:

(Kind of: String) &~ (Begins with: 'test')] once

Generating Code from tests….

� Run the tests, gather all the mock objects used, ask
them to generate code, protocols, comments.

Future Work

� Keep gathering useful constraints (like Sequence,
Different etc.)

� Investigate if constraints can improve code generation
(beyond simplistic usages)

� Investigate whether constraints can infer missing or
conflicting test cases

Conclusions

Summary

When a test fails – ask yourself:

Is it telling me everything it can about the failur e?

Would expressing it as a test constraint make it
clearer?

Speaker:
Tim Mackinnon
http://www.iterex.co.uk/research

Related Work

� James Robertson’s Daily Smalltalk: ComplexConditions
� (http://www.cincomsmalltalk.com/casts/stDaily/2007/smalltalk_da

ily-08-15-07.html)

Acknowledgements

� Blaine Buxton/Brian Rice for encouragement at
STS2006

� Nat Pryce for introducing me to the idea of constraints as
objects

Tim Mackinnon - Who are you?

� 1996 – OTI
� Developer on teams credited for early use of agile practices

� 1999 – Connextra
� Formed one of the first Agile teams in the UK
� Invented “Mock Objects” test technique
� Pioneered Iteration/Heartbeat Retrospectives

� 2003 – ThoughtWorks
� Agile enablement coaching
� Established hi-level release estimation techniques
� Developed worldwide QuickStart project workshops

� 2006 – Iterative Excellence
� Tailored Consulting for Agile projects
� Iterex Professional – Software helping teams plan and track agile

projects

