PyPy - How to not write Virtual Machines for

Dynamic Languages

Armin Rigo

Institut fir Informatik
Heinrich-Heine-Universitat Dlisseldorf

ESUG 2007

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



This talk is about:
@ implementing dynamic languages
(with a focus on complicated ones)

@ in a context of limited resources
(academic, open source, or domain-specific)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic



This talk is about:
@ implementing dynamic languages
(with a focus on complicated ones)

@ in a context of limited resources
(academic, open source, or domain-specific)

Complicated = requiring a large VM

@ Smalltalk (etc...): typically small core VM
@ Python (etc...): the VM contains quite a lot

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



This talk is about:
@ implementing dynamic languages
(with a focus on complicated ones)

@ in a context of limited resources
(academic, open source, or domain-specific)

Complicated = requiring a large VM

@ Smalltalk (etc...): typically small core VM
@ Python (etc...): the VM contains quite a lot

y

Limited resources

@ Only near-complete implementations are really useful
@ Minimize implementer’s duplication of efforts

\

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Our point:
@ Do not write virtual machines “by hand”
@ Instead, write interpreters in high-level languages
@ Meta-programming is your friend

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic



Common Approaches to VM construction

Using C directly (or C disguised as another language)

@ CPython

@ Ruby

@ Spidermonkey (Mozilla’s JavaScript VM)
@ but also: Squeak, Scheme48

<

Building on top of a general-purpose OO VM

@ Jython, IronPython
@ JRuby, IronRuby

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Implementing VMs in C

When writing a VM in C it is hard to reconcile:
@ flexibility, maintainability
@ simplicity of the VM
@ performance (needs dynamic compilation techniques)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Implementing VMs in C

When writing a VM in C it is hard to reconcile:
@ flexibility, maintainability
@ simplicity of the VM
@ performance (needs dynamic compilation techniques)

Python Case

@ CPython is a very simple bytecode VM, performance not
great

@ Psyco is a just-in-time-specializer, very complex, hard to
maintain, but good performance

@ Stackless is a fork of CPython adding microthreads. It was
never incorporated into CPython for complexity reasons

v

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Compilers are a bad encoding of Semantics

@ to reach good performance levels, dynamic compilation is
often needed

@ a dynamic compiler needs to encode language semantics
@ this encoding is often obscure and hard to change

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Compilers are a bad encoding of Semantics

@ to reach good performance levels, dynamic compilation is
often needed
@ a dynamic compiler needs to encode language semantics

@ this encoding is often obscure and hard to change

Python Case

@ Psyco is a dynamic compiler for Python

@ synchronizing with CPython’s rapid development is a lot of
effort

@ many of CPython’s new features not supported well

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Fixing of Early Design Decisions

@ when starting a VM in C, many design decisions need to
be made upfront

@ examples: memory management technique, threading
model

@ the decision is manifested throughout the VM source
@ very hard to change later

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Fixing of Early Design Decisions

@ when starting a VM in C, many design decisions need to
be made upfront

@ examples: memory management technique, threading
model

@ the decision is manifested throughout the VM source
@ very hard to change later

Python Case

@ CPython uses reference counting, increfs and decrefs
everywhere

@ CPython uses OS threads with one global lock, hard to
change to lightweight threads or finer locking

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Implementation Proliferation

@ restrictions of the original implementation lead to
re-implementations, forks

@ all implementations need to be synchronized with
language evolution

@ lots of duplicate effort

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Implementation Proliferation

@ restrictions of the original implementation lead to
re-implementations, forks

@ all implementations need to be synchronized with
language evolution

@ lots of duplicate effort

Python Case

@ several serious implementations: CPython, Stackless,
Psyco, Jython, IronPython, PyPy

@ the implementations have various grades of compliance

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Implementing Languages on Top of General-Purpose

OO VMs

@ users wish to have easy interoperation with the
general-purpose OO VMs used by the industry (JVM, CLR)

@ therefore re-implementations of the language on the OO
VMs are started

@ even more implementation proliferation

@ implementing on top of an OO VM has its own set of
problems

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Implementing Languages on Top of General-Purpose

OO VMs

@ users wish to have easy interoperation with the
general-purpose OO VMs used by the industry (JVM, CLR)

@ therefore re-implementations of the language on the OO
VMs are started

@ even more implementation proliferation

@ implementing on top of an OO VM has its own set of
problems

Python Case

@ Jython is a Python-to-Java-bytecode compiler
@ IronPython is a Python-to-CLR-bytecode compiler

@ both are slightly incompatible with the newest CPython
version (especially Jython)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Benefits of implementing on top of OO VMs

@ higher level of implementation
@ the VM supplies a GC and mostly a JIT
@ better interoperability than what the C level provides

@ some proponents believe that eventually one single VM
should be enough

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



The problems of OO VMs

@ some of the benefits of OO VMs don’t work out in practice

@ most immediate problem: it can be hard to map concepts
of the dynamic lang to the host OO VM

@ performance is often not improved, and can be very bad,
because of the semantic mismatch between the dynamic
language and the host VM

@ poor interoperability with everything outside the OO VM
@ in practice, one OO VM is not enough

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



The problems of OO VMs

@ some of the benefits of OO VMs don’t work out in practice

@ most immediate problem: it can be hard to map concepts
of the dynamic lang to the host OO VM

@ performance is often not improved, and can be very bad,
because of the semantic mismatch between the dynamic
language and the host VM

@ poor interoperability with everything outside the OO VM
@ in practice, one OO VM is not enough

Python Case

@ Jython about 5 times slower than CPython

@ IronPython is about as fast as CPython (but some
introspection features missing)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



PyPy’s Approach to VM Construction

Goal: achieve flexibility, simplicity and performance together

@ Approach: auto-generate VMs from high-level descriptions
of the language

@ ... using meta-programming techniques and aspects

@ high-level description: an interpreter written in a high-level
language

@ ... which we translate (i.e. compile) to VMs running on top
of various targets, like C/Posix, CLR, JVM

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



PyPy

@ PyPy = Python interpreter written in RPython + translation
toolchain for RPython

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



PyPy

@ PyPy = Python interpreter written in RPython + translation
toolchain for RPython

What is RPython

@ RPython is a subset of Python

@ subset chosen in such a way that type-inference can be
performed

@ still a high-level language (unlike SLang or Prescheme)

@ ...really a subset, can’t give a small example of code that
doesn't just look like Python :-)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Auto-generating VMs

@ high-level source: early design decisions not necessary

@ we need a custom translation toolchain to compile the
interpreter to a full VM

@ many aspects of the final VM are orthogonal to the
interpreter source: they are inserted during translation

@ translation aspect = monads, with more ad-hoc control

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Auto-generating VMs

@ high-level source: early design decisions not necessary

@ we need a custom translation toolchain to compile the
interpreter to a full VM

@ many aspects of the final VM are orthogonal to the
interpreter source: they are inserted during translation

@ translation aspect = monads, with more ad-hoc control

Garbage Collection strategy
@ Threading models (e.g. coroutines with CPS...)

@ non-trivial translation aspect: auto-generating a dynamic
compiler from the interpreter

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Good Points of the Approach

Simplicity:
@ dynamic languages can be implemented in a high level
language
@ separation of concerns from low-level details
@ a potential single-source-fits-all interpreter — less
duplication of efforts

@ runs everywhere with the same semantics — no outdated
implementations, no ties to any standard platform

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Good Points of the Approach

Simplicity:
@ dynamic languages can be implemented in a high level
language
@ separation of concerns from low-level details

@ a potential single-source-fits-all interpreter — less
duplication of efforts

@ runs everywhere with the same semantics — no outdated
implementations, no ties to any standard platform

arguably the most readable Python implementation so far \

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Good Points of the Approach

Flexibility at all levels:

@ when writing the interpreter (high-level languages rule!)
@ when adapting the translation toolchain as necessary
@ to break abstraction barriers when necessary

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Good Points of the Approach

Flexibility at all levels:

@ when writing the interpreter (high-level languages rule!)
@ when adapting the translation toolchain as necessary
@ to break abstraction barriers when necessary

@ boxed integer objects, represented as tagged pointers
@ manual system-level RPython code

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Good Points of the Approach

Performance:

@ “reasonable” performance

@ can generate a dynamic compiler from the interpreter
(work in progress, 60x faster on very simple Python code)

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Good Points of the Approach

Performance:

@ “reasonable” performance

@ can generate a dynamic compiler from the interpreter
(work in progress, 60x faster on very simple Python code)

JIT compiler generator

@ almost orthogonal from the interpreter source - applicable
to many languages, follows language evolution “for free”

@ based on Partial Evaluation

@ benefits from a high-level interpreter and a tweakable
translation toolchain

@ generating a dynamic compiler is easier than generating a
static one!

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Open Issues / Drawbacks / Further Work

@ writing the translation toolchain in the first place takes lots
of effort (but it can be reused)

@ writing a good GC is still necessary. But: maybe we can
reuse existing good GCs (e.g. from the Jikes RVM)?

@ conceptually simple approach but many abstraction layers

@ dynamic compiler generation seems to work, but needs
more efforts. Also: can we layer it on top of the JIT of a
general purpose OO VM?

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



Conclusion / Meta-Points

@ high-level languages are suitable to implement dynamic
languages

@ doing so has many benefits

@ VMs shouldn’t be written by hand

@ PyPy’s concrete approach is not so important
@ diversity is good

@ let’s write more meta-programming toolchains!

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages



For more information

http://codespeak.net/pypy/

@ Main way we develop PyPy

@ They are programming camps, a few days to one week
long

@ We may have one in Bern soon (PyPy+Squeak) and/or in
Germany (JIT and other topics)

v

See also

Google for the full paper corresponding to these slides that was
submitted at Dyla’2007

v

Armin Rigo PyPy - How to not write Virtual Machines for Dynamic Languages


http://codespeak.net/pypy/

